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Transient luminous emissions (TLEs), such as Sprites, Jets 
and Elves, occur above thunderstorm clouds (1). Terrestrial 
gamma-ray flashes (TGFs) are brief (less than a few milli-
seconds) emissions of photons reaching energies of tens of 
MeV, observed by astrophysical satellites passing over thun-
derstorms (2–5). TGFs were initially thought to originate 
from high-altitude TLEs, where low atmospheric absorption 
would allow the TGF photons to escape, but their source 
was later determined to be within the thunderstorm clouds 
(6–8). It is now understood that TGFs are produced by 
bremsstrahlung radiation from electrons accelerated in 
thunderstorm electric fields, reaching energies in the runa-
way regime, where the cross sections for interactions de-
crease with further acceleration (9). To generate TGFs, seed 
electrons are needed in the runaway regime, e.g., released 
by cosmic ray interactions with the atmosphere (10), or 
from thermal electrons accelerated in the fields of lightning 
leader tips (11). The relativistic electron flux must then be 
amplified for the bremsstrahlung to reach the measured flux 
levels, as in relativistic runaway electron avalanches, possi-
bly enhanced by feed-back effects from positrons created by 
pair-production and from ionization by backscattered 
bremsstrahlung (9). The role of the large-scale electric field 
in a cloud relative to the enhanced field at a lightning leader 
tip, however, is still debated (9–11). 

We present observations with the Atmosphere-Space In-

teractions Monitor (ASIM), installed on the International 
Space Station (ISS), of a TGF produced in the initial stage of 
a lightning flash. The TGF was observed east of the island of 
Sulawesi in Indonesia on 2018 October 10, at 
13:01:33.100080 Coordinated Universal Time (UTC). ASIM 
has two X- and gamma-ray detectors, three ultraviolet (UV) 
and optical photometers, and two optical imaging cameras 
(12–14). The instruments are pointed toward the nadir (di-
rectly downwards) to minimize gamma-ray flux losses due 
to atmospheric absorption. Figure 1, A and B, shows the lo-
cation of the TGF, the surrounding cloud top altitudes de-
rived from observations by the Himawari weather satellite 
(15), and the full and cropped field of view of the ASIM opti-
cal instruments. Figure 1C shows the projection of the ASIM 
camera image and the location of a coincident lightning 
event detected by the World Wide Lightning Location Net-
work (WWLLN) (15). 

The instrument data projections are to 12 km altitude, 1 
km below the maximum altitude of the cloud top (Fig. 1C). 
The pointing direction of the sensors is determined from the 
ISS attitude and the nominal mounting of the ASIM plat-
form. It is calibrated by assuming the WWLLN lightning 
location is at the maximum optical activity of the ASIM im-
age. This correction is ~ 1.4°, corresponding to 11.8 km at 
ground level, which also aligns the ASIM image of the cloud 
with its position in the Himawari data. The WWLLN light-
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Terrestrial gamma-ray flashes (TGFs) are transient gamma-ray emissions from thunderstorms, generated 
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ning location has ~5 km uncertainty and occurred ~11 ms 
after the time estimated by the ASIM photometer pulses 
(15), which is within the ~20 ms uncertainty in the absolute 
timing signal received by ASIM from the ISS. The TGF 
source location is estimated from the angle of arrival of 70-
350 keV photons to the ASIM low energy X-ray detector 
(LED). This angle is determined from the shadow pattern 
cast by a coded mask onto the pixelated detector plane. The 
relative pointing direction between the LED and the optical 
sensors has not been calibrated so we assume its nominal 
value (co-aligned). We conclude that the optical and X-ray 
measurements provide a consistent identification of this 
small (20 km2) convective cloud as the source of the light-
ning associated with the TGF. 

The signals of the three ASIM photometers around the 
time of the event are shown in Fig. 2. The photometers 
measure continuum emission in the UV band 180-235 nm, 
covering part of the Lyman‐Birge‐Hopfield (LBH) system of 
N2, and line emissions from N2 2P at 337 nm (filter width 5 
nm) and O i at 777.4 nm (filter width 3 nm), all at sample 
frequencies of 100,000 Hz. Also shown in Fig. 2 are the ob-
servations of the TGF, in photon counts measured by the 
low-energy X-ray detector (50-350 keV) and the high-energy 
detector (HED, 300 keV-30 MeV). The time resolution is 1 μs
for the LED and 27 ns for the HED, and the relative timing 
accuracy between the optical sensors and LED/HED is ±5 
μs. 

The optical activity begins several milliseconds before
the main optical pulses and intensifies at a time t = -200 μs,
measured with respect to the onset of the HED pulse, signi-
fying an increase of the lightning current. The onset of the 
TGF coincides with the onset of the UV emissions (to within 
10 μs) and an accelerated increase in the 337 nm and 777.4
nm signals appears as a change in their slope 0-60 μs after
the TGF trigger (15). The TGF lasts about 30-40 μs and has a
weaker tail extending to ~80 μs for the high-energy photons
(HED) and ~200 μs for the low energy photons (LED), con-
sistent with delays expected from Compton scattering of X- 
and gamma-rays in the atmosphere (16). 

The emissions at 777.4 nm are from atomic oxygen and 
therefore from the current in a lightning leader channel, 
and the 337 nm emissions are mostly from the lightning 
discharge in the cloud (leader and streamers) (17) with neg-
ligible contributions from the ionosphere (i.e., an Elve) (18). 
UV emissions are strongly damped in the atmosphere, but 
are seen here with an amplitude that rises more rapidly 
than the optical signals, which is the signature of an Elve 
(18). Elves are quite common (19) ~1 ms duration emissions 
excited by the electromagnetic pulse (EMP) from the large 
current impulse of cloud-to-ground lightning (20) or intra-
cloud lightning (21). The EMP energizes free electrons at the 
lower edge of the ionosphere at 80-90 km altitude, which 

excite the atmospheric constituents. The radiation pattern 
from the lightning current onset excites rings of Elve emis-
sion centered above the lightning (for vertical lightning), 
which rapidly expand horizontally with detectable radii 
from ~50 to 400 km (22). The ASIM imaging cameras are 
not sufficiently sensitive to measure Elves because of their 
short duration and large spatial extent when observed to-
ward the nadir, so we only analyze data from the photome-
ters. 

The UV Elve is detected with a delay corresponding to 
the travel times of the EMP to the ionosphere and of UV 
photons from the ionosphere to the instruments. The short-
est combined path is approximately the direct path, consid-
ering the geometry of the observations (Fig. 3). We therefore 
consider the initiation of the UV pulse as coinciding with 
the initiation of the current pulse, which starts ≲10 μs after
the onset of the TGF. The equivalent optical photons are 
scattered in the cloud, causing the optical pulse to broaden 
and the peak to be delayed by several hundred microsec-
onds or more, depending on the optical depth of the source 
and on the cloud properties (23). This is consistent with the 
UV and optical pulses we observe (Fig. 2B). The characteris-
tics of the optical pulses also resemble those of lightning 
emissions observed by the Fast On-orbit Rapid Recording of 
Transient Events (FORTE) satellite (24). This suggests that 
the current source lifetime is much shorter than the optical 
pulses, although we cannot characterize the pulse current 
further from optical measurements alone. The first optical 
photons to arrive at the sensors are those that have under-
gone the least scattering in the cloud. A pulse is first detect-
ed by ASIM when the flux-levels are above the sensor 
sensitivity thresholds and the onset of a pulse may therefore 
appear with a delay. For this event, the optical pulses are 
bright and rising out of pre-activity, suggesting that a delay 
from the limits of the sensor sensitivities and of cloud scat-
tering are minor and that the optical pulses, therefore, 
should start at approximately the same time as the UV 
pulse, as observed. 

The photometer measurements are shown on a loga-
rithmic scale in Fig. 4. The TGF and the associated high-
amplitude pulses occur ~5 ms after the beginning of the 
lightning flash (Fig. 4B), consistent with studies of radio 
emissions from TGF-producing flashes (25). The flash fades 
over ~280 ms, terminating with two smaller optical pulses 
(Fig. 4A). The onset of the emission at t = -5 ms could reflect 
the time when an upward propagating lightning leader first 
becomes detectable in the cloud, or it may reflect the onset 
of the formation of the leader. The start of the leader emis-
sion is modulated by 2 larger oscillations (Fig. 4B), possibly 
related to the leader propagation, and the continuation after 
the TGF could reflect the continued propagation of the 
leader upwards/horizontally into a positive charge layer, as 
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has been previously proposed (26). However, cloud scatter-
ing is too strong to identify the spatial propagation of the 
leader from the camera images. 

Although TGF-type emissions have been observed from 
leaders propagating to the ground (27), we reject that sce-
nario as an explanation of this event, because of the strong 
photon absorption that would occur in the lower atmos-
phere (9). Instead, we interpret this event as an intra-cloud 
lightning flash of positive polarity (Fig. 3) where the electric 
field ahead of the leader plays a role in producing the TGF. 

The Elve requires a high-amplitude lightning current 
pulse with a fast rise time, which suggests the formation of, 
or access to, a large charge reservoir within the cloud that is 
rapidly drained. The reservoir could be formed by the ioniz-
ing avalanche of the relativistic electrons or by the for-
mation of an extended streamer corona, as suggested by 
radio signal studies of TGFs (28–30). It is likely that further 
current amplification is required to produce an Elve. Pulses 
with high currents have been identified in radio observa-
tions and have been associated with TGFs (31). They are 
termed positive energetic in-cloud pulses (+EIPs); they last 
~50 μs and may reach hundreds of kA (31). +EIPs occur typ-
ically in the upper regions of clouds after a few milliseconds 
of ascending negative leader activity, and it has been sug-
gested that they can generate TGFs and Elves simultaneous-
ly (31). The TGF in this event is relatively short in duration 
compared to past observations (2–5). A short duration was 
predicted for TGFs accompanied by Elves, because Elves 
require lightning source currents that vary more rapidly 
(31). The optical pulses we observe may then be the coun-
terpart of radio +EIPs. 

Our observations illustrate the temporal sequence of 
emissions in optical, UV, X-ray and gamma-rays bands with 
a time resolution of 10 μs and simultaneous imaging of a
TGF in hard X-rays and optical images. The observations 
provide evidence that there is a connection between TLEs 
and TGFs after all. 
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Fig. 1. Location of the TGF event observed on 2018 October 10. (A) Cloud top altitudes (15) are shown in color. The 
ISS orbit is shown by the yellow curve and the red dot marks its position at the onset time of the TGF at 
13:01:33.100080 UTC. The white dot marks the most probable TGF location, with white contours outlining the 68% and 
95.4% confidence regions. The black box is the full field of view of the optical instruments, and the white dash-lined box 
the cropped images downlinked from the ISS. (B) The same view zoomed in to the active cloud region. A single 
thundercloud partially overlaps with the TGF 95% confidence region. (C) The TGF position overlain with a projection of 
the ASIM camera image in the 337 nm filter, with 83 ms exposure. A coincident lightning event detected by the WWLLN 
(15) is shown with a red cross. The attitude of the ASIM instruments is calibrated to align the WWLLN lightning location 
with the maximum optical activity of the ASIM image. 
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Fig. 2. Light curves of the event. The gamma-flash trigger time is at t = 0 which corresponds to 13:01:33.100080 
UTC. (A) Photometer (left axis), X-ray and gamma-ray (right axis) measurements around the time of the event. LED 
is the low-energy X-ray detector (50-350 keV) and HED the high-energy detector (300 keV-30 MeV). The UV 
photometer measures 180-235 nm and is multiplied by 100 to show on the same scale as the optical photometers. All 
three photometers sample at 100 kHz. (B) The same data shown zoomed in further at the time of the TGF. 

Fig. 3. Our proposed scenario. An intra-cloud (IC) lightning event generates a TGF and electromagnetic pulse 
(EMP). The EMP excites expanding waves of UV emission in the lower ionosphere (Elve). TGF and UV emissions are 
observed by ASIM on the ISS (arrows). The grey bar at the bottom is the ground. 
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Fig. 4. Analysis of the lightning flash. (A) The same data as Fig. 2 but on a logarithmic scale and smoothed by a 
Gaussian filter with width σ = 10 samples. Two additional optical pulses occur 200-300 ms after the initial flash. (B)
The same data zoomed in to the start of the flash smoothed with σ = 2 samples. Optical emission begins 5 ms prior to
UV emission and the TGF. 
 

on D
ecem

ber 16, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://www.sciencemag.org/
http://science.sciencemag.org/


A terrestrial gamma-ray flash and ionospheric ultraviolet emissions powered by lightning

Georgi Genov, Shiming Yang, Pavlo Kochkin, Javier Navarro-Gonzalez, Paul H. Connell and Chris J. Eyles
Christiansen, Carl Budtz-Jørgensen, Irfan Kuvvetli, Ib Lundgaard Rasmussen, Andrey Mezentsev, Martino Marisaldi, Kjetil Ullaland, 
Torsten Neubert, Nikolai Østgaard, Victor Reglero, Olivier Chanrion, Matthias Heumesser, Krystallia Dimitriadou, Freddy

published online December 11, 2019

ARTICLE TOOLS http://science.sciencemag.org/content/early/2019/12/09/science.aax3872

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2019/12/09/science.aax3872.DC1

REFERENCES

http://science.sciencemag.org/content/early/2019/12/09/science.aax3872#BIBL
This article cites 35 articles, 2 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

Copyright © 2019, American Association for the Advancement of Science

on D
ecem

ber 16, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/content/early/2019/12/09/science.aax3872
http://science.sciencemag.org/content/suppl/2019/12/09/science.aax3872.DC1
http://science.sciencemag.org/content/early/2019/12/09/science.aax3872#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

