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Abstract We present two case studies of FAST electrostatic analyzer measurements of both highly
nonthermal (𝜅 ≲ 2.5) and weakly nonthermal/thermal monoenergetic electron precipitation at ∼4,000 km,
from which we infer the properties of the magnetospheric source distributions via comparison of
experimentally determined number density-, current density-, and energy flux-voltage relationships with
corresponding theoretical relationships. We also discuss the properties of the two new theoretical number
density-voltage relationships that we employ. Moment uncertainties, which are calculated analytically
via application of the Gershman et al. (2015, https://doi.org/10.1002/2014JA020775) moment uncertainty
framework, are used in Monte Carlo simulations to infer ranges of magnetospheric source population
densities, temperatures, 𝜅 values, and altitudes. We identify the most likely ranges of source parameters
by requiring that the range of 𝜅 values inferred from fitting experimental moment-voltage relationships
correspond to the range of 𝜅 values inferred from directly fitting observed electron distributions with
two-dimensional kappa distribution functions. Observations in the first case study, which are made over
∼78–79◦ invariant latitude in the Northern Hemisphere and 4.5–5.5 magnetic local time, are consistent
with a magnetospheric source population density nm = 0.7–0.8 cm−3, source temperature Tm ≈ 70 eV,
source altitude h = 6.4–7.7 RE, and 𝜅 = 2.2–2.8. Observations in the second case study, which are made over
76–79◦ invariant latitude in the Southern Hemisphere and ∼21 magnetic local time, are consistent with a
magnetospheric source population density nm = 0.07–0.09 cm−3, source temperature Tm ≈ 95 eV, source
altitude h ≳ 6 RE, and 𝜅 = 2–6.

Plain Language Summary The plasma sheet is the magnetospheric source region for
much of the electron precipitation that produces aurora several thousand kilometers below, within the
ionosphere at approximately 100 km altitude on Earth's nightside. Using FAST satellite observations within
the so-called magnetosphere-ionosphere transition region, we show how the features of these accelerated,
aurora-forming electrons as observed by satellites at intermediate altitudes can be used to infer the density,
temperature, degree of thermal equilibration, and altitude of the magnetospheric source region.

1. Introduction
Potential differences exist along geomagnetic field lines that connect the plasma sheet and high-latitude
magnetosphere to the ionosphere. Knight (1973) formally demonstrated the relationship between a
field-aligned, monotonic potential profile represented by a total potential difference ΔΦ and field-aligned
current density below the potential drop j|| generated by precipitation of magnetospheric electrons subject
to a magnetic mirror ratio RB = B∕Bm,

𝑗||,M(ΔΦ;Tm,nm,RB) = −enm

(
Tm
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) 1
2
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[
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exp
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}]
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Here Tm and nm are the temperature and density of precipitating electrons at the magnetospheric source,
�̄� ≡ eΔΦ∕Tm is the potential drop normalized by source temperature, and me is the electron mass. The
subscript m indicates the magnetospheric source region.
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The current density-voltage (J-V) relation (1) assumes that the magnetospheric source population is isotropic
and in thermal equilibrium, and is thus described by a Maxwellian distribution. However, magnetospheric
electron and ion distributions observed with spacecraft often show suprathermal tails (Christon et al., 1989,
1991; Kletzing et al., 2003; Wing & Newell, 1998) which may be produced via a number of mechanisms (see,
e.g., review by Pierrard & Lazar, 2010). The possibility of a source distribution with a “high-energy tail” was
in fact acknowledged by Knight (1973), and reformulations of the Maxwellian J-V relation (1) assuming
a variety of alternative source distributions have been developed (Boström, 2003, 2004; Dors & Kletzing,
1999; Janhunen & Olsson, 1998; Pierrard, 1996). One such alternative distribution employed with increasing
frequency is the isotropic kappa distribution

𝑓𝜅(E;T,n, 𝜅) = n

(
m

2𝜋T (1 − 3
2𝜅
)

) 3
2 Γ (𝜅 + 1)

𝜅3∕2Γ
(
𝜅 − 1

2

)⎛⎜⎜⎜⎝1 + E(
𝜅 − 3

2

)
T

⎞⎟⎟⎟⎠
−1−𝜅

, (2)

which originally entered the space physics community as a model for high-energy tails of observed solar
wind plasmas (Vasyliūnas, 1968). The additional parameter 𝜅 ∈

[
𝜅min,∞

)
parameterizes the degree

𝜌 = 𝜅min∕𝜅 ∈ (0, 1] (3)

to which particle motion is correlated and is related to the “thermodynamic distance” between a stationary
(i.e., invariant over relevant time scales) nonequilibrium state and thermal equilibrium. The range of 𝜅 val-
ues observed in a plasma environment depends on the transport, wave-particle interaction, and acceleration
processes that are found within that environment (see, e.g., Pierrard & Lazar, 2010; Treumann, 1999b). The
theoretical minimum (in three dimensions) 𝜅min = 3∕2 corresponds to perfectly correlated degrees of free-
dom and particle motions (𝜌 = 1), while 𝜅 → ∞ corresponds to uncorrelated degrees of freedom (𝜌 = 0)
and thermal equilibrium, or a Maxwellian distribution (Treumann, 1999a).

Livadiotis and McComas (2010) have shown that 𝜅t ≃ 2.45 (𝜌 ≃ 0.61) marks a transition between these
two extremes, with 𝜅min ≤ 𝜅 ≲ 𝜅t constituting the “far-equilibrium” regime and 𝜅t ≲ 𝜅 < ∞ the
“near-equilibrium” regime.

Relaxing the assumption of a magnetospheric source population in thermal equilibrium, Dors and Kletzing
(1999) showed that the J-V relation (1) becomes
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(4)

For equal nm and Tm, the values of j|| predicted by equations (1) and (4) differ by more than ∼33% for the
far-equilibrium regime (𝜅min < 𝜅 ≲ 𝜅t; Hatch et al., 2018). Recent case studies (Kaeppler et al., 2014;
Ogasawara et al., 2017) and a statistical study (Hatch et al., 2018) suggest that such extreme 𝜅 values seldom
occur in the auroral acceleration region.

Equations (1), otherwise known as the Knight relation, and (4) are examples of J-V relationships. Such rela-
tionships are a means for understanding the role of field-aligned potential differences within large-scale
magnetospheric current systems. The Knight relation in particular has contributed to present understanding
of the magnetosphere-ionosphere current system (e.g., Boström, 2003; Cowley, 2000; Dombeck et al., 2013;
Karlsson, 2012; Lu et al., 1991; Lyons et al., 1999; Paschmann et al., 2003; Pierrard et al., 2007; Shiokawa
et al., 1990; Temerin, 1997). Moment-voltage relationships such as that between energy flux and voltage, a
“JE-V” relationship, are also derivable (Boström, 2003, 2004; Chiu & Schulz, 1978; Dors & Kletzing, 1999;
Janhunen & Olsson, 1998; Liemohn & Khazanov, 1998; Pierrard, 1996; Pierrard et al., 2007). These other rela-
tionships have received comparatively little attention even though they represent additional, valuable tools
for estimating magnetospheric source population parameters from particle observations at lower altitudes.

Using previously published J-V and JE-V relationships and two new number density-voltage (n-V) rela-
tionships, we show how knowledge of the degree to which monoenergetic precipitation departs from
Maxwellian form leads to identification of narrow ranges of magnetospheric source parameters that are
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compatible with observed moment-voltage relationships. This technique is enabled by the Gershman et al.
(2015) methodology for analytic calculation of moment uncertainties as well as direct two-dimensional
distribution fits.

2. Methodology
Here we summarize the JE-V and n-V relationships that we use in addition to the J-V relationships (1) and
(4), as well as the Gershman et al. (2015) methodology for estimating moment uncertainties of measured
electron distribution functions.

2.1. JE-V and n-V Relationships
Assuming a monotonic potential profile the JE-V relationships for isotropic Maxwellian and kappa source
distributions are, respectively (Dors & Kletzing, 1999),
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(6)

with Π = 1 + �̄�

(𝜅−3∕2)(RB−1)
in (6). One may also derive the corresponding Maxwellian and kappa n-V

relationships (Appendix A)
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where D(𝑦) = exp
(
−𝑦2) ∫ 𝑦

0 exp
(
𝑦′

2) d𝑦′ in (7) and x is a dummy integration variable in (8). The relationships
(5)–(8) are written in terms of the same variables as those used in the J-V relationships (1) and (4). Properties
of the JE-V relationships (5) and (6) have been discussed by Dors and Kletzing (1999). Some properties of
the n-V relationships (7) and (8), which are previously unpublished, are discussed here.

Figure 1a shows the n-V relationships as a function of �̄� for Maxwellian (𝜅 → ∞, orange lines), moderately
nonthermal (𝜅 = 𝜅t, blue lines), and extremely nonthermal (𝜅 = 1.6, blue lines) source populations.
Mirror ratios of 3, 30, and 300 are represented by solid, dashed, and dotted lines respectively.

It is evident that n∕nm → 1∕2 in the limit �̄� → 0; this behavior is shown analytically for the Maxwellian
n-V relation in the asymptotic expression (A3). On the other hand, n∕nm → 0 for �̄� ≫ RB, as shown in the
asymptotic expression (A4).

The n-V relationships predict half the source density nm in the �̄� → 0 limit (i.e., no field-aligned poten-
tial) because only those particles in the magnetospheric source region having a parallel velocity component
toward the ionosphere (defined as v|| > 0) are included in the range of integration used to obtain the n-V
relationships; all others move away from the ionosphere and are ignored (Appendix A). This restriction on
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Figure 1. The n-V relationships in equations (7) and (8). The ratio n∕nm is plotted on the y axis, where nm is
magnetospheric source population density and n is the density at the altitude corresponding to mirror ratio RB and to
the bottom of normalized potential drop �̄� = ΔΦ∕Tm. (a) n-V relationships as a function of �̄� for RB = 3 (solid lines),
RB = 30 (dashed lines), and RB = 300 (dotted lines). (b) n-V relationships as a function of RB for �̄� = 1 (solid lines) and
�̄� = 10 (dashed lines). In panel (b) the region between the 𝜅 = 𝜅t and 𝜅 → ∞ curves is shaded. n-V = number
density-voltage.

the range of integration is identically the reason that in the �̄� → 0 limit the J-V relations (1) and (4) and the
JE-V relationships (5)–(6), respectively, predict nonzero current densities, or “thermal flows” (Paschmann et
al., 2003), and nonzero energy fluxes. For instance, in this limit j||,M = −enm(Tm∕2𝜋me)1/2. (See, e.g., Figure
3.8 in Paschmann et al., 2003).

More generally, increasing �̄� (i) increases the number of particles that have access to lower altitudes by
increasing v||, which increases n∕nm (the total volume under the distribution function), and (ii) compresses
the distribution function in velocity space (see Inequality (A2a)), which decreases n∕nm. On the other hand,
increasing RB while simultaneously conserving the first adiabatic invariant causes the distribution function
to evolve toward an annular or “ring” distribution, such that (i) particles at large pitch angles (v⟂ > v||) in the
source region are reflected at lower altitudes, which decreases n∕nm, and (ii) particles with small pitch angles
(v|| > v⟂) in the source region, particularly those near the peak of the distribution near v|| = √

2eΔΦ∕m,
also spread to larger pitch angles, increasing the total volume under the distribution function and thereby
increasing n∕nm. The maximum values of n∕nm in Figure 1a thus represent nontrivial interplay of these
competing factors (see equation (A5)).

Figure 1b shows as a function of RB the Maxwellian and kappa n-V relationships (7) and (8) normalized by
source density nm, for �̄� = 1 (solid lines), �̄� = 10 (dashed lines), and several values of 𝜅. The magnetospheric
source region corresponds to RB = 1. For a Maxwellian source population in the limit RB → 1, n is given
by the first term in the Maxwellian n-V relation (7). For a kappa source population in the limit RB → 1,
n approaches values similar to that approached by the Maxwellian curve. The topmost curve in Figure 1b
shows that for �̄� = 10 ≪ RB and 𝜅 = 1.6, the density at lower altitudes increases by as much as a factor 5.
More generally, n∕nm ∝

√
�̄�∕(1 − 3

2𝜅
) for 1 ≲ �̄� ≪ RB. The shaded region between the 𝜅 = 𝜅t and 𝜅 → ∞
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curves (blue and orange, respectively) in Figure 1b indicates that there is little difference, generally less than
30%, between the Maxwellian and kappa n-V relationships for 𝜅 ≳ 𝜅t and equal �̄�. Asymptotic expressions
for the Maxwellian n-V relation (7) are given in Appendix A.

2.2. Uncertainty of Distribution Moments
This study also relies on moments of measured electron distributions, including the number density n,
field-aligned current density j|| = e⟨nv||⟩, and field-aligned energy flux 𝑗E|| = m

2
⟨nv2v||⟩. Estimation of the

uncertainty of moments has typically involved generation of statistics of each moment via Monte Carlo sim-
ulation of f(v) (e.g., Moore et al., 1998). We alternatively use standard techniques of linearized uncertainty
analysis to derive analytic expressions for the uncertainties of field-aligned current density and energy flux,
respectively, 𝜎𝑗|| and 𝜎𝑗E|| , as functions of moments of f(v) and moment covariances. (The uncertainty of num-
ber density n is trivially 𝜎n.) Moment covariances are calculated following the methodology of Gershman
et al. (2015). In Appendix B we present both these analytic expressions and a summary of the Gershman
et al. (2015) methodology, which together enable the Monte Carlo simulations presented in sections 3.2
and 4.2.

3. Orbit 1607
3.1. Data Presentation
During an approximately 90-s interval on 17 January 1997, the FAST satellite observed inverted V electron
precipitation over 80–600 eV (Figures 2a and 2b) and over ∼4.5–5.5 magnetic local time in the Northern
Hemisphere during low geomagnetic activity (Kp = 0−). Figure 2a shows that over much of this interval the
distributions include both isotropic and trapped components, while the antiearthward loss cone is relatively
depleted. For instance over 01:05:10–01:05:15 UT the isotropic component is somewhat weak (dJE∕dE ≲

3 × 107eV/cm2-s-sr-eV) and the trapped component is more intense (dJE∕dE ≳ 108eV/cm2-s-sr-eV).

Figure 2b gives the observed electron energy spectrogram averaged over observations at all pitch angles
within the earthward loss cone. The loss cone is calculated from model geomagnetic field magnitudes at
FAST and at the 100-km ionospheric footpoint, which are both obtained from International Geomagnetic
Reference Field 11. For the period indicated between dashed lines (01:04:28–01:04:41 UT), which we will
discuss momentarily, Figure 2b shows that the peak energy of monoenergetic electron precipitation varies
between 80 and 500 eV.

We perform full 2-D fits to the portion of electron distributions that are observed within the earthward loss
cone (horizontal dotted white lines in Figure 2a) and between the energy at which the distributions peak
above 80 eV (Ep) up to the 30-keV limit of FAST electron electrostatic analyzers (EESAs; Carlson et al.,
2001). To obtain these fits, we first form a 1-D differential number flux distribution by averaging the counts
within each EESA energy-angle bin over the range of angles within the earthward portion of the loss cone,
after which 1-D fits of the resulting average differential number flux spectrum are performed using the
model differential number flux J = 2E

m2 𝑓
(

E − Ep
)
, with 𝑓

(
E − Ep

)
either a 1-D Maxwellian or 1-D kappa

distribution. The resulting 1-D best-fit parameters then serve as initial estimates for 2-D fits of the observed
differential energy flux spectrum, over the previously described range of pitch angles and energies, using
model differential energy flux dJE∕dE = 2E2

m2 𝑓
(

E − Ep
)
. Both 1-D and 2-D distribution fits are performed

using Levenberg-Marquardt weighted least-squares minimization via the publicly available Interactive Data
Language MPFIT library (http://cow.physics.wisc.edu/˜craigm/idl/fitting.html).

The most probable fit parameters and 90% confidence intervals are then obtained by following a procedure
similar to those employed by Kaeppler et al. (2014) and Ogasawara et al. (2017): for each time and each
type of distribution, we fit N = 5,000 Monte Carlo simulated 2-D distributions by adding to each best-fit
distribution a normal random number Z ∼  (0, 1) that is multiplied by the counting uncertainty (section
15.6 in Press et al., 2007) in units of differential energy flux. For the simulated kappa distribution fits we also
select a uniform random number K ∼ U(𝜅min, 35) as an initial guess for 𝜅.

For each fit parameter we then form a histogram from the resulting 5,000 Monte Carlo values. The value at
which the histogram peaks is taken to be the most probable fit parameter. We then use a simple algorithm
that increases the size of a window centered on the most probable fit parameter until 4,500 (90%) of the
parameter values are included in the window.
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Figure 2. Electron electrostatic analyzer observations of inverted V precipitation on 17 January 1997, and
corresponding 2-D fit parameters. Parameters related to best-fit Maxwellian and kappa distributions are, respectively,
indicated by red squares and blue triangles in panels (c)–(f). (a) >80-eV electron pitch-angle distribution. The
earthward portion of the loss cone (see text for definition) comprises the ∼60◦ range of pitch angles between the dotted
horizontal lines at approximately 30◦ and approximately −30◦. (b) Average electron energy spectrum within the
earthward loss cone. (c) 𝜅 fit parameter for the best-fit kappa distribution. The red horizontal line indicates 𝜅 = 𝜅t ≃
2.45. The black arrow indicates the kappa value for fits shown in Figure 3. (d) Reduced chi-squared statistic 𝜒2

red for
each fit type. The black horizontal line indicates 𝜒2

red = 5. (e) Best-fit temperatures. (f) Calculated density moments
(black diamonds) and best-fit densities. Calculated densities are obtained as 2-D model-independent moments of the
differential flux measured over pitch angles |𝜃| ≤ 30◦, from the energy of the channel immediately below the peak
energy Ep up to 5 keV. Resulting density moments and uncertainties (vertical black bars) are then multiplied by the
ratio of the solid-angle ratio 1∕(1 − cos 30◦) ≈ 7.46. Uncertainties of best-fit parameters represent 90% confidence
intervals obtained via Monte Carlo simulations with N = 5,000 trials. Electron electrostatic analyzer observations are
integrated to obtain an effective sample period T = 0.63 s. MLT = magnetic local time; ILAT = invariant latitude.

HATCH ET AL. 1553
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Figure 3. Electron spectra observed at 01:04:34.37–01:04:35.00 UT. (a) 1-D differential number flux spectrum (black
crosses) obtained by averaging differential number flux spectra over all pitch angles within the earthward loss cone,
with best-fit Maxwellian and kappa distributions overlaid (red dash-dotted line and blue dashed line, respectively). The
uncertainty of each observed differential number flux is calculated by conversion of the electron count uncertainty

√
N

to units of differential number flux. (b) Best-fit 2-D kappa distribution (solid contours) with the observed 2-D
differential energy flux spectrum overlaid (contour lines). The color bar at right shows the differential energy flux of
each contour. For each pitch angle black asterisks indicate the peak energy Ep = 315 eV, and red plus signs outline the
range of energies and pitch angles used to perform the 2-D fit.

Reported parameters are 𝜅 (Figure 2c) for the kappa distribution, and temperature (Figure 2e) and density
(Figure 2f) for both Maxwellian and kappa distribution fits. For each most probable fit parameter the 90%
confidence interval is indicated by a vertical bar. In many instances the upper and lower limits of the 90%
confidence interval are very near the most probable fit parameter value. For example, for over 92% of the
most probable 𝜅 parameters in Figure 2c the upper and lower limit of the 90% confidence interval is within
10% of the most probable 𝜅 parameter itself.

Figure 3 shows example 1-D (Figure 3a) and 2-D (Figure 3b) distribution fits to electron observations during
01:04:34.37–01:04:35.00 UT, indicated by the black arrow in Figure 2c. The observed distribution in Figure 3a
(black plus signs and error bars) is much better described by the best-fit kappa distribution (blue dashed
line) than by the best-fit Maxwellian distribution (red dash-dotted line). The overall better description that
the kappa distribution fits yield for observations throughout the entire 90-s interval is indicated in Figure 2d,
which shows values of the reduced chi-squared statistic

𝜒2
red =

N∑
i

1
F

(
Yi(x) − 𝑦i(x)

)2

w2
i

(9)
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for 2-D fits using either a kappa distribution (blue triangles) or a Maxwellian distribution (red squares). In
this expression i indexes each pitch angle and energy bin used in the fitting procedure, Yi is the observed
differential energy flux, yi is the differential energy flux of the original best-fit 2-D model distribution, wi
is the uncertainty due to counting statistics, and F is the degrees of freedom, or the total number of pitch
angle-energy bins N minus the number of free model parameters. The difference is most pronounced after
approximately 01:05:00 UT, corresponding to the interval during which 𝜅min < 𝜅 ≲ 2 in Figure 2c.

Figure 2e shows that over approximately the first half of the 90-s interval, T = 30–200 ev for both Maxwellian
and kappa distribution fits. Comparison with statistical plasma sheet temperatures reported by Kletzing
et al. (2003, their Figure 4) indicates that these temperatures are within typical ranges. During the latter
half of the interval the most probable kappa temperatures tend to be much higher (∼100–2000 eV) than
during the first half, while corresponding Maxwellian temperatures remain low (20–100 eV). The kappa
“core temperatures” (Nicholls et al., 2012) Tc = T(1− 3

2𝜅
) (not shown) during the latter half are nonetheless

within several eV of Maxwellian temperatures.

Figure 2f shows that relative to the calculated densities, the best-fit densities for Maxwellian and kappa dis-
tributions are generally within factors of two to five. For calculated densities the corresponding uncertainties
(vertical black bars) are obtained using analytic expressions for moment uncertainties related to counting
statistics for an arbitrary distribution function (Gershman et al., 2015). These uncertainties are generally
less than 10% of the calculated density.

3.2. Inference of Magnetospheric Source Parameters
We now demonstrate how the observed electron distributions may indicate the properties of the magneto-
spheric source region. This is performed via comparison of the predictions of moment-voltage relationships
(1) and (4)–(8) with experimental moment-voltage relationships derived from model-independent fluid
moments of the electron distributions observed during the delineated interval between dashed lines in
Figure 2, 01:04:31–01:04:41 UT. We have selected this interval because it is associated with the largest
variation in the inferred potential during the entire 90-s period.

The J-V and JE-V relationships are formed by first determining the potential drop ΔΦ (solid white line,
Figure 2b) at each time, which is taken to be the peak electron energy Ep. (There is no potential drop below
FAST during this interval, which would otherwise be indicated by the presence of upgoing ion beams; see,
e.g., Elphic et al., 1998; Hatch et al., 2018). We define the peak energy Ep as the energy of the EESA channel
above which the observed differential flux spectrum exhibits exponential or power law decay (Kaeppler et al.,
2014; Ogasawara et al., 2017), within the earthward loss cone. We then calculate the parallel electron current
density j||,i and energy flux jE||,i of the observed electron distribution, using measurements from the peak
energy Ep up to 5 keV and the range of angles within the earthward loss cone. The upper bound of the energy
integration range is limited to 5 keV because statistics of particles above this energy are poor and contribute
almost exclusively to the uncertainty of these moments. These two moments are mapped to the ionosphere
at 100 km using International Geomagnetic Reference Field 11 (denoted by the subscript i).

The n-V relationship is also formed from the inferred potential drop ΔΦ and from the calculated number
density n, but unlike the fluxes j||,i and jE||,i, n is not a flux and is not straightforward to map to the iono-
sphere. We therefore must form a “local” (i.e., unmapped) n-V relationship and obtain n via integration over
the same range of energies that are used to calculate j||,i and jE||,i (from Ep up to 5 keV), but over a modi-
fied pitch angle range, which in a local treatment should be the full 180◦ range of earthward pitch angles.
However, inspection of the delineated interval in Figure 2a indicates the presence of a prominent trapped
population at pitch angles |𝜃| ≳ 40◦ (e.g., at 01:04:37 UT) that should not be included in the calculation of
n. We therefore integrate over a 60◦ range of angles that is centered on the earthward loss cone and mul-
tiply both the calculated densities and their uncertainties by the solid-angle ratio 1∕(1 − cos 30◦) ≈ 7.46 to
compensate for the exclusion of observations over pitch angles |𝜃| > 30◦. This multiplication assumes the
primary electron distribution is isotropic outside the loss cone.

The experimental J-V, JE-V, and n-V relationships are shown in Figures 4a–4c. Also shown are the results
of simultaneously fitting all three of these relationships with the corresponding Maxwellian and kappa
moment-voltage relationships (1)–(8) using NonlinearModelFit in the Mathematica® (v11.3) programming
language. The best-fit Maxwellian (blue lines) and kappa (orange lines) fits correspond to 𝜒2

red = 25.2 and
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Figure 4. J-V, JE-V, and n-V relationships inferred from electron observations during the interval 01:04:28–01:04:41 UT
in Figure 2, together with best-fit Maxwellian (solid blue lines) and kappa (solid orange lines) moment-voltage
relationships obtained by simultaneously fitting all three experimentally inferred moment-voltage relationships. (a) J-V
relationship. (b) JE-V relationship. (c) n-V relationship. Given values of the inferred potential drop ΔΦ occur multiple
times within the sample interval, causing the experimental data to be multivalued. Calculated current densities and
energy fluxes (bullets) as well as their uncertainties (1𝜎) are mapped to the ionosphere at 100 km as described in the
text. Calculated number densities are not mapped to the ionosphere. Moment uncertainties are obtained as analytic
moments of observed electron distributions, as described in Appendix B. The 𝜒2

red values indicated in Figure 4a are the
sum of the 𝜒2

red value corresponding to each moment-voltage relationship. J-V = current density-voltage; JE-V = energy
flux-voltage; n-V = number density-voltage.
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Figure 5. (a) Joint distribution of density nm and mirror ratio RB for Maxwellian fits of N = 2,000 Monte Carlo
simulated current density-voltage, energy flux-voltage, and number density-voltage relationships (1), (5), and (7).
(b) Same as panel (a), except that fits are performed using the kappa current density-voltage, energy flux-voltage,
number density-voltage relationships (4), (6), and (8). In both panels the RB axis is logarithmic and the secondary axis
shows the approximate source height h in Earth radii. The gray scale indicates the distribution height in units such that
the peak value of each distribution is 1.0.

𝜒2
red = 27, respectively, where these two 𝜒2

red values are the sum of the three 𝜒2
red corresponding to each type

of moment-voltage relation.

We obtain these fits by drawing from random variables N ∼ U(0.05 cm−3,1.5 cm−3) and R ∼ U(5, 104) to
initialize nm and RB in each moment-voltage relationship. For the kappa moment-voltage relationships we
must also draw from a random variable to initialize the 𝜅 parameter. To accomplish this we randomly choose
a degree of correlated motion W ∼ U(0.05, 0.85) (see equation (3)), from which we obtain an initial kappa
value K ∼ 𝜅min∕W. The lower and upper bounds of the uniformly random degree of correlation W , 𝜌 = 0.05
and 𝜌 = 0.85, respectively, correspond to 𝜅 = 30 and 𝜅 = 1.76.

For both types of fits the parameter Tm is held fixed. For the fits involving the Maxwellian moment-voltage
relationships the value of Tm is set equal to the median (65 eV) of the best-fit Maxwellian distribution temper-
atures (red boxes in Figure 2e) during the marked interval. For the fits involving the kappa moment-voltage
relationships the value of Tm is set equal to the median (74 eV) of the best-fit kappa distribution temper-
atures (blue triangles in Figure 2e). Additionally, because the experimental n values in Figure 4c are not
mapped to the ionosphere, the RB parameter in the n-V relationships (7)–(8) must be reduced by a factor
RB,FAST = Bi

BFAST
≈ 4 when fitting the experimental n-V relationship.

Similar to the process described at the beginning of this section for Monte Carlo simulation of 2-D distribu-
tion fits, to determine the range of parameters that may describe the observed moment-voltage relationships
we perform fits to N = 2,000 Monte Carlo simulated moment-voltage relationships for each type of J-V, JE-V,
and n-V relationship, either Maxwellian or kappa. For each iteration, we add to each of the inferred poten-
tial drop values a uniform random number X ∼  (0,ΔEp), where the value in the second argument is
the uncertainty of the electron peak energy, which arises from the EESA energy channel spacing. We insert
these synthetic potential drop values into the best-fit J-V, JE-V, and n-V relationships and add to each of these
theoretical moment predictions a normal random number Z ∼  (0, 1) multiplied by the uncertainty of the
corresponding current density, energy flux, or number density measurements. We then draw from the ran-
dom variables N, R, and K, which are as described above, to initialize nm, RB, and 𝜅, respectively. We then
perform the fit.

The resulting joint distributions of nm and RB are shown in Figures 5a and 5b for the Maxwellian and
kappa moment-voltage relationships, respectively. The Maxwellian moment-voltage relationships predict
two different solution regimes: the first corresponds to nm = 0.88–0.90 cm−3 and RB = 200–500; the second

HATCH ET AL. 1557



Journal of Geophysical Research: Space Physics 10.1029/2018JA026158

Figure 6. Electron electrostatic analyzer observations of inverted V precipitation on 28 October 1997 and corresponding 2-D fit parameters, in the same format
as Figure 2. (a) >100-eV electron pitch-angle distribution. The earthward portion of the loss cone comprises the range of pitch angles between dotted horizontal
lines at ∼150◦ and ∼210◦. (b) Average electron energy spectrum within the earthward loss cone. (c) 𝜅 fit parameter for the best-fit kappa distribution.
(d) Reduced chi-squared statistic 𝜒2

red for each fit type. (e) Best-fit temperatures. (f) Calculated and best-fit densities. Calculated densities are also obtained as
model-independent moments via integration over from the energy of the channel immediately below Ep up to 5 keV, and over all pitch angles |𝜃| > 150◦.
Uncertainties of calculated densities and best-fit density and temperature parameters are obtained as described in the Figure 2 caption. Electron electrostatic
analyzer observations during this interval have a sample period T = 2.5 s. MLT = magnetic local time; ILAT = invariant latitude.
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corresponds to nm = 0.87–0.88 cm−3 and RB = 3,200–7,500. The secondary axis indicates the approximate
source altitudes h =5.7–7.7 RE and h =14–15.5 RE, respectively, where RE indicates the radius of Earth. The
kappa moment-voltage relationships also show two different solution regimes: the first corresponds to nm =
0.70–0.79 cm−3, RB = 300—510 (h =6.4–7.7 RE), and 𝜅 = 2.2–2.8; the second corresponds to nm = 0.55–0.56
cm−3, RB = 300–500 (h =6.4–7.6 RE), and 𝜅 ≤ 1.8.

The 𝜒2
red value for the kappa fits in Figure 4 is 7% greater than the 𝜒2

red value for the Maxwellian fits. It
therefore seems impossible to determine the correct solution regime solely on the basis of information in
Figures 4 and 5. However, only the first kappa solution regime is consistent with the range 𝜅 = 2–9 that
arises from direct 2-D distribution fits during the 10-s delineated period in Figure 2c.

We have also performed N = 6, 000 Monte Carlo simulations using only the inferred J-V relationship
(Figure 4a) and either the Maxwellian J-V relation (1) or the kappa J-V relation (4). From the Maxwellian
J-V relation we obtain solutions corresponding to nm = 0.88–0.90 cm−3 and RB ≥ 680 (h ≥8.5 RE). From the
kappa J-V relation (4) we obtain solutions corresponding to nm = 0.68–0.84 cm−3 and RB ≥ 2,100 (h ≥12.8
RE) for 𝜅 = 2.2–2.8. Thus, for this case study and an assumed Maxwellian or kappa source population, the
source altitude lower bound is greater when only the J-V relationship is used.

4. Orbit 4682
4.1. Data Presentation
During a 75-s interval on 28 October 1997, the FAST satellite observed inverted V electron precipitation
(Figures 6a and 6b) at ∼21 magnetic local time and −78◦ invariant latitude in the Southern Hemisphere
during moderately low geomagnetic activity (Kp = 2). The pitch-angle spectrogram in Figure 6a shows
that precipitation within the earthward loss cone (range of pitch angles between horizontal dotted white
lines in Figure 6a) is weak (dJE∕dE ≲ 5 × 107eV/cm2-s-sr-eV), while trapped electrons over 30◦ ≲ |𝜃| ≲

150◦ are more intense. Over the entire 75-s interval as well as over the ∼20-s period between dashed lines,
09:06:31–09:06:51.5 UT, Figures 6b and 6c, respectively, show Ep = 100–1,200 eV and 𝜅 ≈ 2–5. Figure 6d
shows that best-fit Maxwellian 𝜒2

red values are generally twice or more those of best-fit kappa 𝜒2
red values.

Best-fit temperatures shown in Figure 6e indicate that over the entire interval T = 75–130 ev for Maxwellian
distribution fits, while T = 35–145 ev for kappa distribution fits. As with temperatures in Figure 2e, these
ranges of temperatures are within the typical range for plasma sheet electrons.

Densities calculated directly from observed electron distributions in Figure 6f (black diamonds) are within
the range 0.01–0.5 cm−3 that is typically observed in the distant plasma sheet (Kletzing et al., 2003;
Paschmann et al., 2003). Most probable Maxwellian and kappa fit densities in Figure 6f tend to be with
factors of 2 of the calculated densities. Similar to the density moments and uncertainties calculated in the
previous section, we calculate the density over all energies from Ep up to 5 keV and over all earthward pitch
angles in the Southern Hemisphere, |𝜃| > 150◦. We multiply calculated densities and density uncertainties
by the solid-angle ratio 1∕(1 − cos 30◦) ≈ 7.46 to compensate for the exclusion of primary electrons over the
range of downgoing pitch angles dominated by trapped electrons (90◦ < 𝜃 < 150◦ and −150◦ < 𝜃 < −90◦).

Figure 7 shows an example of the electron distributions observed during the delineated period
(09:06:31–09:06:51.5 UT), in the same layout as Figure 3. As in Figure 3, the best-fit kappa distribution (blue
dashed line) successfully describes the suprathermal tail and is a better fit than the Maxwellian distribution
(red dash-dotted line) as reflected in the 𝜒2

red values, respectively, 0.56 and 2.57 (also Figure 6d).

4.2. Inference of Magnetospheric Source Parameters
Using the Monte Carlo simulation process described in section 3.2, we now determine the range of param-
eters that may describe the observed moment-voltage relationships during the 20-s period shown between
dashed lines in Figure 6 assuming each type of magnetospheric source population, either Maxwellian or
kappa. We select this period because the inferred potential drop (solid white line in Figure 6b) decreases by
roughly an order of magnitude, from ∼1,150 eV to ∼150 eV.

The experimental J-V, JE-V, and n-V relationships are shown in Figures 8a–8c. Also shown are the results
of simultaneously fitting all three of these relationships with the corresponding Maxwellian and kappa
moment-voltage relationships (1), (4)–(8). Best-fit Maxwellian (blue lines) and kappa (orange lines) fits,
respectively, correspond to 𝜒2

red = 2.5 and 𝜒2
red = 3.1. As in section 3.2, we obtain these fits by drawing from

random variables N ∼ U(0.01 cm−3,0.5 cm−3), R ∼ U(5, 104), and K ∼ 𝜅min∕W to initialize nm, RB, and 𝜅
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Figure 7. Electron spectra observed at 09:06:38.931–09:06:41.437 UT. The layout is the same as that of Figure 3. (a) 1-D
differential number flux spectrum (black crosses) obtained by averaging all differential number flux spectra over all
pitch angles within the earthward loss cone, with best-fit Maxwellian and kappa distributions overlaid (red dash-dotted
line and blue dashed line, respectively). (b) Best-fit 2-D kappa distribution (solid contours) with the observed 2-D
differential energy flux spectrum overlaid (contour lines). For each pitch angle black asterisks indicate the peak energy
Ep = 560 eV, and red plus signs outline the range of energies and pitch angles used to perform the 2-D fit.

in each moment-voltage relationship. (The random variable K is only used in the kappa moment-voltage
relationships.) For both types of fits the parameter Tm is held fixed. For the fits involving the Maxwellian
moment-voltage relationships the value of Tm is set equal to the median T = 96 eV of the best-fit Maxwellian
distribution temperatures (red boxes in Figure 6e) during the marked interval. For the fits involving the
kappa moment-voltage relationships the value of Tm is set equal to the median T = 95 eV of the best-fit
kappa distribution temperatures (blue triangles in Figure 6e).

The resulting joint distributions of nm and RB are shown in Figures 9a and 9b for the Maxwellian and
kappa moment-voltage relationships, respectively, in a layout identical to that of Figure 5. The Maxwellian
moment-voltage relationships predict nm = 0.097–0.103 cm−3 and RB ≥1,400 (h ≥ 8.1 RE). The kappa
moment-voltage relationships show several different solution regimes, all of which correspond to RB ≳ 370
(h ≳ 4.6 RE) and nm = 0.055–0.10 cm−3: the first overlaps with the Maxwellian solution regime in Figure 9a
and corresponds to nm = 0.096–0.0102 cm−3, RB ≥ 370 (h ≥ 4.6), and 𝜅 > 10; the second corresponds to
nm = 0.072–0.094 cm−3, RB ≳ 700 (h ≳ 5.7), and 2 ≤ 𝜅 10; the third corresponds to nm = 0.054–0.059 cm−3,
RB ≳ 103 (h ≳ 6.8), and 𝜅 < 2.

The 𝜒2
red value for the kappa fits in Figure 8 is ∼24% greater than the 𝜒2

red value for the Maxwellian fits. As
with results in the previous section, information in Figures 8 and 9 seems insufficient to determine the
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Figure 8. J-V, JE-V, and n-V relationships inferred from electron observations during the interval 09:06:31–09:06:51.5
UT in Figure 6, together with best-fit Maxwellian (solid blue lines) and kappa (solid orange lines) moment-voltage
relationships obtained by simultaneously fitting all three experimentally inferred moment-voltage relationships. The
format is the same as that of Figure 4. (a) J-V relationship. (b) JE-V relationship. (c) n-V relationship. Calculated
current densities and energy fluxes (black plus signs) as well as their uncertainties (1𝜎) are mapped to the ionosphere
at 100 km as described in section 3.2. Calculated number densities are not mapped to the ionosphere. Moment
uncertainties are obtained as analytic moments of observed electron distributions (Appendix B). The 𝜒2

red values
indicated in panel (a) are the sum of the 𝜒2

red values corresponding to each moment-voltage relationship. J-V = current
density-voltage; JE-V = energy flux-voltage; n-V = number density-voltage.
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Figure 9. (a) Joint distribution of density nm and mirror ratio RB for Maxwellian fits of N = 2,000 Monte Carlo
simulated current density-voltage, energy flux-voltage, and number density-voltage relationships (1), (5), and (7).
(b) Same as panel (a), except that fits are performed using the kappa current density-voltage, energy flux-voltage,
number density-voltage relationships (4), (6), and (8). In both panels the RB axis is logarithmic and the secondary axis
shows the approximate source height h. The gray scale indicates the distribution height in units such that the peak
value of each distribution is 1.0.

correct solution regime. However, only the second kappa solution regime is consistent with the direct 2-D
distribution fits during the 20-s delineated period in Figure 6.

As in section 3.2 we have performed N = 6, 000 Monte Carlo simulations using only the inferred J-V rela-
tionship (Figure 8a) and either the Maxwellian J-V relation or the kappa J-V relation. From the Maxwellian
J-V relation the resulting solutions correspond to nm = 0.097–0.106 cm−3 and RB ≥ 1,900 (h ≥10 RE). From
the kappa J-V relation (4) we obtain solutions corresponding to nm = 0.071–0.093 cm−3 and RB ≥ 1,500
(h ≥8.6 RE) for 𝜅 = 2–10. Similar to results in section 3.2, the source altitude lower bound is greater when
only the J-V relationship is used.

5. Discussion and Summary
For the two case studies that we have presented we assume either Maxwellian or kappa source populations
when fitting the observed J-V, JE-V, and n-V relationships, which results in 𝜒2

red values that differ by a few
to several percent (see Figures 4 and 8). Such differences indicate that the moment-voltage relationships
themselves are insufficient to determine the source region properties. We identify the most likely ranges of
source densities and altitudes in each case study by requiring that these parameters correspond to the range
of 𝜅 values estimated from direct 2-D fits of observed electron distributions.

Table 1 summarizes the ranges of most likely source parameters for both case studies. As stated in previous
sections, the estimated temperatures and densities are within or near the typical ranges expected on the

Table 1
Most Likely Magnetospheric Source Parameters

Temperaturea Density h
Source type (eV) (cm−3) RB (RE) 𝜅

Orbit 1607 Maxwellian 65 0.87–0.9 220–6,400 5.8–15
Kappa 74 0.70–0.79 300–510 6.4–7.7 2.2–2.8

Orbit 4682 Maxwellian 96 0.097–0.103 ≥1400 ≥8.1
Kappa 95 0.071–0.091 ≥720 ≥5.9 2–6

aFixed.
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basis of surveys of the plasma sheet. The combined range of 𝜅 values estimated for each orbit, 𝜅 = 2–6, are
also within the ranges indicated by in situ plasma sheet surveys (Christon et al., 1989, 1991; Kletzing et al.,
2003; Stepanova & Antonova, 2015).

The estimated ranges of source altitudes for these two case studies, h = 6.4–7.7 for Orbit 1607 observations
and h ≥ 5.9 RE for Orbit 4682 observations, are above the typically quoted range of altitudes ∼1.5–3 RE for
the auroral acceleration region (Mozer & Hull, 2001; Morooka et al., 2004; Marklund et al., 2011). Results
from previous studies (Li et al., 2014; Wygant, 2002) indicate that such “high-altitude acceleration” scenarios
often involve Alfvén wave-particle interactions, and Andersson et al. (2002) have shown that the signatures
of these interactions at high altitudes may appear monoenergetic.

There are three primary limitations of this study. First, verification of the results shown in Table 1 requires
conjunctive observations along similar field lines from FAST in the acceleration region and from another
spacecraft in the source region; unfortunately the latter are not available during the intervals shown in
Figures 2 and 6. Second, related to the previous point, the clear monoenergetic peaks in Figures 2b and
6b suggest that the potential structures above FAST are stationary relative to the transit time of plasma
sheet electrons. We nevertheless cannot directly verify our assumption that quasistatic magnetospheric pro-
cesses and monotonic potential structures are the cause of the electron precipitation shown in Figures 2a–2b
and 6a–6b. Third, the moment-voltage relationships (1) and (4)–(8) assume that the magnetospheric source
population is isotropic.

Studies performed by Hull et al. (2010) and Marklund et al. (2011) have shown that potential structures are
generally neither quasistatic nor monotonic, and Hatch et al. (2018) present statistics suggesting that elec-
tron distributions may be modified in the vicinity of the AAR. These studies indicate that our assumptions
of stationarity, nonvariability of source parameters along the mapped satellite track, and adiabatic trans-
port from the source region to the ionosphere are not always true, and some evidence of violation of our
assumptions appears in, for example, the experimental J-V relation (top panel) in Figure 4: For some data
points neither the Maxwellian nor the kappa J-V relation is within 2–3𝜎. Such differences could suggest that
the errors associated with our assumptions are larger than that associated with moment uncertainty and
counting statistics.

Concerning the third limitation, magnetospheric source populations are not necessarily isotropic, and pre-
vious studies (Forsyth et al., 2012; Marghitu et al., 2006) have shown how the observed degree of anisotropy
of electron precipitation may in fact be used to estimate the source altitude. While outside the scope of the
present study, relaxing the assumption of isotropy and adapting the source altitude estimation techniques
presented by these previous studies are natural future extensions of the techniques we have developed for
the two case studies presented above.

Regardless of the particular values or ranges of parameters that we have identified, these case studies nev-
ertheless demonstrate how the non-Maxwellian nature of an electron source population may be embedded
in the observed moment-voltage relationships, requiring modification of both the inferred source density
and mirror ratio. From this standpoint the degree to which a source population departs from thermal equi-
librium, as indicated by the 𝜅 parameter in this study, is as fundamental a plasma property as density or
temperature.

A relatively small number of studies, such as those of Dombeck et al. (2013), Lu et al. (1991), Morooka et al.
(2004), and Shiokawa et al. (1990), has compared various forms of the Knight relation (1) to observations.
To our knowledge, however, no study besides the present has used the moment-voltage relationships (1)
and (4)–(8) that are predicted by Liouville's theorem, or any subset thereof, to infer the properties of the
magnetospheric source region on the basis of observations at lower altitudes.

In summary, in this study we have (i) derived the two previously unpublished n-V relationships (7) and
(8); (ii) inferred the properties of magnetospheric source populations in two case studies based on simul-
taneous fitting of the three experimental moment-voltage relationships with corresponding theoretical
moment-voltage relationships (1), (4)–(8), moment uncertainties, and direct 2-D fits of observed precip-
itating electron distributions; (iii) demonstrated that knowledge of the degree to which monoenergetic
precipitation departs from Maxwellian form, which we parameterize via the𝜅 index, is required to determine
the most likely set of magnetospheric source parameters.
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Appendix A: Theory of Collisionless Transport Through a Field-Aligned
Monotonic Potential Structure
Here we review the theory that yields the J-V, JE-V, and n-V relationships (1) and (4)–(8). The development is
intended to be brief since several more elaborate developments have been given elsewhere (e.g., references
in section 1).

Assuming a gyrotropic, collisionless magnetospheric source population, an electron distribution function
f(v||, v⟂) can be written in terms of total energy and the first adiabatic invariant:

E =
me

2
(v2|| + v2

⟂) + Π(B); (A1a)

𝜇 =
mev2

⟂

2B(s)
. (A1b)

In these expressions v|| and v⟂ are parallel and perpendicular velocity, Π(B) is the distribution of potential
energy along the field line, B(s) is magnetic field strength, and s is a one-to-one function of B that measures
the distance along a magnetic field line from the magnetospheric source region toward the ionosphere. We
denote the magnetic field strength at the source Bm ≡ B(s0) and assume Π(Bm) = 0. Thus, the initial total
energy is E0 = me

2
(v2||,0 + v2

⟂,0). From equations (A1) we then have v2||,0 = v2|| + v2
⟂

(
1 − Bm

B(s)

)
+ 2

me
Π(B), with

v2
⟂,0 eliminated via equation (A1b).

In principle derivation of a moment-voltage relationship involves simple application of equations (A1) in
Liouville's theorem, f(v||, v⟂) = f(v||,0, v⟂,0), followed by calculation of the relevant moment. In practice, the
complexity of these calculations is related to the shape of Π(B), since multiple regions of phase space may
be inaccessible, or “forbidden,” at lower altitudes. (For example, particles with parallel velocities that are
too low to overcome a retarding potential structure will be reflected.) Care must be taken to exclude such
forbidden regions from moment calculations (Boström, 2003, 2004; Liemohn & Khazanov, 1998; Pierrard et
al., 2007). We are interested in the simplest nontrivial case, namely, that for whichΠ(B) obeys the conditions
dΠ
dB

< 0 and d2Π
dB2 > 0, with the derivatives defined everywhere along the magnetic field line. For this case

each moment-voltage relationship is independent of the shape of Π(B) and can be written as a function of
the total potential difference ΔΦ (e.g., the J-V relationships (1) and (4); see Liemohn & Khazanov, 1998).

The allowed region of phase space is v|| ≥ 0. Via the two invariants in equation (A1) the lower bound of this
inequality may be written in terms of total kinetic energy W , initial parallel kinetic energy W||,0, and pitch
angle 𝜃 ≡ tan−1(v⟂∕v||) as

W||,0 = W
(

1 − sin2(𝜃)
Bm

B(s)

)
− eΔΦ = 0.

The region of phase space over which to integrate is then defined by the inequalities

W ≥ eΔΦ∕
(

1 − sin2(𝜃)
Bm

B(s)

)
; (A2a)

𝜃 ∈
{

(−90◦, 90◦) Northern Hemisphere;
(90◦, 270◦) Southern Hemisphere.

(A2b)

Assuming gyrotropy the zeroth moment of f(v||, v⟂) is n = 2𝜋 ∫ ∫ v⟂𝑓 (v||, v⟂)dv⟂dv||. The Maxwellian and
kappa n-V relations (7) and (8) result from evaluation of this integral over the boundaries (A2) using either
an isotropic Maxwellian or isotropic kappa distribution function, respectively, and assuming a total potential
drop ΔΦ.

For 1 ≲ �̄� ≪ RB the Maxwellian n-V relation (7) reduces to

n∕nm = 1
2

e�̄�erfc �̄�
1
2 +

(
�̄�∕𝜋

) 1
2 , (A3)
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while in the limit �̄� ≫ RB > 1 the Maxwellian n-V relation reduces to

n∕nm = 1
2

e�̄�erfc �̄�
1
2 + 1

2
RB − 1(
𝜋�̄�

) 1
2

. (A4)

For fixed RB the maximum value of n∕nm is given by �̄� such that

e�̄�erfc
(√

�̄�

)
= 2√

𝜋
(

RB − 1
)D

⎛⎜⎜⎝
√

�̄�

RB − 1

⎞⎟⎟⎠ . (A5)

Appendix B: Analytic Expressions for Moment Uncertainties
We follow the Gershman et al. (2015) framework for calculating the moment uncertainties used in Monte
Carlo simulations in sections 3.2 and 4.2. Let W be a differentiable function of plasma moments ⟨nAi⟩; the
linearized uncertainty 𝜎W may be expressed

𝜎2
W =

∑
i

∑
𝑗

(
𝜕W
𝜕Ai

)(
𝜕W
𝜕A𝑗

)
𝜎Ai ,A𝑗

. (B1)

The squared uncertainty of n is trivially 𝜎2
n, while squared uncertainties of j|| and jE|| are

𝜎2
𝑗|| = V||𝜎2

n + n𝜎2
V|| + 𝜎n,V|| ; (B2a)

𝜎2
𝑗E|| = 𝜎2

H,|| + B
[
2𝜎H|| ,V|| + B𝜎2

V||
]

(B2b)

+V|| [3𝜎H|| ,P|| + 2𝜎H|| ,P⟂
+ B

(
3𝜎V|| ,P|| + 2𝜎V|| ,P⟂

)]
(B2c)

+V 2||
[9

4
𝜎2

P|| + 3𝜎P|| ,P⟂
+ 𝜎2

P⟂

]
; (B2d)

where V|| is the average parallel velocity and B =
(

3
2

P|| + P⟂

)
in expression (B2d). Equation (B2d) expresses

𝜎2
𝑗E|| in terms of parallel heat flux H|| and parallel and perpendicular pressures P|| and P⟂. Dependence on

H|| arises because the computational routine provided as supporting information for Gershman et al. (2015)
yields uncertainties and covariances related to the heat flux vector H; with this dependence the parallel
energy flux jE|| can be written 𝑗E|| = H|| + V|| ( 3

2
P|| + P⟂

)
(Paschmann & Daly, 1998). Equation (B2d) also

assumes (i) gyrotropy, because FAST ion and electron ESAs measure only one direction perpendicular to
the geomagnetic field, and (ii) average perpendicular velocity V⟂ = 0, since there is negligible dependence
on V⟂ at FAST altitudes.

Calculation of moment uncertainties and covariances from f(v) in equations (B2) requires the following
assumptions:

1. The sampling of each phase space volume is unique. For FAST ESAs, which sample energy and pitch angle,
this assumption means, for example, that there is no overlap between regions of phase space sampled by
each energy-angle detector bin, and that there is no crosstalk.

2. The sampled phase space density f(v) corresponds to a number of counts N(v) = f(v)ΔV(v)ΔX(v), where
ΔV(v) and ΔX(v) are, respectively, the phase space velocity and position volumes sampled by FAST ESAs,
and N(v) is a Poisson-distributed random variable.

The covariance between moments ⟨nAi⟩ and ⟨nAj⟩ is 𝜎⟨nAi⟩,⟨nA𝑗 ⟩ = E
[⟨nAi⟩⟨nA𝑗⟩] − E

[⟨nAi⟩]E
[⟨nA𝑗⟩],

where E denotes the expectation value such that

E
[⟨nAi⟩⟨nA𝑗⟩] = ∫∫∫ d3vAi(v)∫∫∫ d3v′A𝑗(v′)E

[
𝑓 (v)𝑓 (v′)

]
;

E
[⟨nAi⟩]E

[⟨nA𝑗⟩] = ∫∫∫ d3vAi(v)∫∫∫ d3v′A𝑗(v′)E [𝑓 (v)]E
[
𝑓 (v′)

]
.

(B3)
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It follows that 𝜎⟨nAi⟩,⟨nA𝑗 ⟩ = ∫∫∫ d3vAi(v) ∫∫∫ d3v′A𝑗(v′)𝜎𝑓 (v),𝑓 (v′); that is, the covariance between any two
moments of f(v) depends on the covariance between the points in phase space v and v′ . Gershman et al.
(2015) show that if 𝜎′

f (v),f (v) is written in terms of the correlation between regions of phase space,

𝜎𝑓 (v),𝑓 (v′) = 𝜎𝑓 (v)𝜎𝑓 (v′)r(v, v′), (B4)

the first assumption implies r(v, v′ ) ≈ 𝛿
′

vv, while the second assumption implies that the uncertainty of the
sampled phase space density is 𝜎𝑓 (v) = 𝑓 (v)∕

√
N(v). Thus,

𝜎𝑓 (v),𝑓 (v′) ≈
𝑓 2(v)
N(v)

, (B5)

which leads to the analytic expression

𝜎⟨nAi⟩,⟨nA𝑗 ⟩ ≈ ∫∫∫
(
d3v

)2Ai(v)A𝑗(v)
𝑓 2(v)
N(v)

=
⟨

nAiA𝑗

(
d3v

) 𝑓 (v)
N(v)

⟩
, (B6)

where the RHS of (B6) represents 𝜎⟨nAi⟩,⟨nA𝑗 ⟩ as a moment of f(v).
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