1

• Breakdown field at sea level: E<sub>break</sub> = 30 kV/cm

- Breakdown field at sea level: E<sub>break</sub> = 30 kV/cm
- At 6 km:  $E_{break}$  = 16 kV/cm  $\rightarrow$  Paschen law

- Breakdown field at sea level: E<sub>break</sub> = 30 kV/cm
- At 6 km:  $E_{break}$  = 16 kV/cm  $\rightarrow$  Paschen law



- Breakdown field at sea level: E<sub>break</sub> = 30 kV/cm
- At 6 km:  $E_{break}$  = 16 kV/cm  $\rightarrow$  Paschen law
- But also presence of water drops decreases breakdown field:
   1.4 mm diameter water drops leads to E<sub>break</sub> = 10 kV/cm



- Breakdown field at sea level: E<sub>break</sub> = 30 kV/cm
- At 6 km:  $E_{break}$  = 16 kV/cm  $\rightarrow$  Paschen law
- In mature thunderclouds minimum field to have corona streamers

estimated to 1.5 to 9.5 kV/cm

- Breakdown field at sea level: E<sub>break</sub> = 30 kV/cm
- At 6 km:  $E_{break}$  = 16 kV/cm  $\rightarrow$  Paschen law
- In mature thunderclouds minimum field to have corona streamers

### estimated to 1.5 to 9.5 kV/cm

 Table 3.2. Maximum electric field magnitudes measured

 in thunderclouds

| Reference                                                                                                                                                                                                                                | Sounding<br>type                                                                            | Maximum<br>electric field,<br>V m <sup>-1</sup>                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gunn (1948)<br>Imyanitov et al. (1971)<br>Winn et al. (1974)<br>Winn et al. (1981)<br>Weber et al. (1982)<br>Byrne et al. (1983)<br>Fitzgerald (1984)<br>Marshall and Rust (1991)<br>Kasemir (as reported by<br>MacGorman and Rust 1998) | Aircraft<br>Aircraft<br>Rockets<br>Balloons<br>Balloons<br>Aircraft<br>Balloons<br>Aircraft | $\begin{array}{c} 3.4\times10^5\\ 2.8\times10^5\\ 4\times10^5\\ 1.4\times10^5\\ 1.1\times10^5\\ 1.3\times10^5\\ 1.2\times10^5\\ 1.5\times10^5\\ 3\times10^5\end{array}$ |

- Breakdown field at sea level: E<sub>break</sub> = 30 kV/cm
- At 6 km:  $E_{break}$  = 16 kV/cm  $\rightarrow$  Paschen law
- In mature thunderclouds minimum field to have corona streamers

### estimated to 1.5 to 9.5 kV/cm

 Table 3.2. Maximum electric field magnitudes measured

 in thunderclouds

| Reference                                                                                                                                                                                                    | Sounding type                                                                               | Maximum<br>electric field,                              | kV/cm |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|-------|
| Gunn (1948)<br>Imyanitov et al. (1971)<br>Winn et al. (1974)<br>Winn et al. (1981)<br>Weber et al. (1982)<br>Byrne et al. (1983)<br>Fitzgerald (1984)<br>Marshall and Rust (1991)<br>Kasemir (as reported by | Aircraft<br>Aircraft<br>Rockets<br>Balloons<br>Balloons<br>Aircraft<br>Balloons<br>Aircraft | 3.4<br>2.8<br>4<br>1.4<br>1.1<br>1.3<br>1.2<br>1.5<br>3 |       |
| MacGorman and Rust 1998)                                                                                                                                                                                     |                                                                                             |                                                         |       |

- Breakdown field at sea level: E<sub>break</sub> = 30 kV/cm
- At 6 km:  $E_{break}$  = 16 kV/cm  $\rightarrow$  Paschen law

- **BUT**: maybe some very strong field locally and short live
- We might hear more about that in later talks about runaway electrons

•  $0.9 \cdot 5 \cdot 10^5 \text{ C/}$ 

• 
$$0.9 \cdot 5 \cdot 10^5 \text{ C/}\left(\frac{4}{3}\pi\left(\left[R_{\text{Earth}} + 5 \text{ km}\right]^3 - R_{\text{Earth}}^3\right)\right)$$

• 
$$0.9 \cdot 5 \cdot 10^5 \text{ C/}\left(\frac{4}{3}\pi\left(\left[R_{\text{Earth}} + 5 \text{ km}\right]^3 - R_{\text{Earth}}^3\right)\right) \sim 0.2 \text{ pC/m}^3$$

• 
$$0.9 \cdot 5 \cdot 10^5 \text{ C/}\left(\frac{4}{3}\pi\left(\left[R_{\text{Earth}} + 5 \text{ km}\right]^3 - R_{\text{Earth}}^3\right)\right) \sim 0.2 \text{ pC/m}^3$$

• Mean charge density is  $\sim 30 \text{ nC/m}^3$  (x 150'000 increase)

• 
$$0.9 \cdot 5 \cdot 10^5 \text{ C} / \left(\frac{4}{3}\pi \left( \left[ R_{\text{Earth}} + 5 \text{ km} \right]^3 - R_{\text{Earth}}^3 \right) \right) \sim 0.2 \text{ pC/m}^3$$

- Mean charge density is  $\sim 30 \text{ nC/m}^3$  (x 150'000 increase)
- ~ 0.3 3 nC/m<sup>3</sup>. Locally can go up to 100 nC/m<sup>3</sup>

## Cloud electrification mechanism: Convection



## Cloud electrification mechanism: Convection



Remember: Fair-weather space charge:  $\sim 0.2 \text{ pC/m}^3$ 

## Cloud electrification mechanism: Convection



Remember: Fair-weather space charge:  $\sim 0.2 \text{ pC/m}^3$ 









 $0.25 \text{ fC} \simeq 1560 \text{ e}$ 





 $0.25 \text{ fC} \simeq 1560 \text{ e}$ 



- Origin of sign depends on many factors (temperature, cloud water content, ice criystal size, relative velocity, ....).
- Thought to be correlated to ice and graupel surface growth No consensus on physical details.
- Still this is the priviledged theory since

Charge density of precipitation ~ charge density inferred from E-field

Lightning representation in numerical cloud models

 Most model make crude assumptions but still show some reasonable values for charge per unit lightning length, total charge transfer and dipole moment charge.

# Lightning representation in numerical cloud models

- Most model make crude assumptions but still show some reasonable values for charge per unit lightning length, total charge transfer and dipole moment charge.
  - Either slab-symmetric or axi-symmetric to reduce dimensionality
  - Hard threshold of ~ 1-4 kV/cm is set to initiate lightning
  - Lightning staring always at same grid point with max E field value
  - Graupel-ice mechanism as electrification

• ...

# Lightning representation in numerical cloud models

- Most model make crude assumptions but still show some reasonable values for charge per unit lightning length, total charge transfer and dipole moment charge.
  - Either slab-symmetric or axi-symmetric to reduce dimensionality
  - Hard threshold of ~ 1-4 kV/cm is set to initiate lightning
  - Lightning staring always at same grid point with max E field value
  - Graupel-ice mechanism as electrification
  - ...
  - Even refined versions still lack fundamental limits: eg. Lightning initiation criterion still remains an open question.

Table 3.3. Median and maximum measured values of  $|E_z|$  in various types of stratiform clouds. Adapted from Imyanitov et al. (1971)

| Median value of $ E_z $ , V m <sup>-1</sup> |                                                                             |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| St Petersburg,<br>Russia (60° N)            | Kiev, Ukraine<br>(50° N)                                                    | Tashkent,<br>Uzbekistan<br>(41° N)                                                                                                                                                                       | Maximum measured value of $ E_z $ , V m <sup>-1</sup>                                                                                                                                                                                                                                                                |
| 100                                         | 120                                                                         | 130                                                                                                                                                                                                      | $(2-3) \times 10^3$                                                                                                                                                                                                                                                                                                  |
| 80                                          | 100                                                                         | 100                                                                                                                                                                                                      | $(2-3) \times 10^3$                                                                                                                                                                                                                                                                                                  |
| 40                                          | 80                                                                          | 70                                                                                                                                                                                                       | $5 \times 10^{3}$                                                                                                                                                                                                                                                                                                    |
| 100                                         | 150                                                                         | 350                                                                                                                                                                                                      | $2 \times 10^{4}$                                                                                                                                                                                                                                                                                                    |
| 150                                         | 250                                                                         | 500                                                                                                                                                                                                      | $4 \times 10^{4}$                                                                                                                                                                                                                                                                                                    |
|                                             | Median<br>St Petersburg,<br>Russia (60° N)<br>100<br>80<br>40<br>100<br>150 | Median value of $ E_z $ , V         St Petersburg, Russia (60° N)       Kiev, Ukraine (50° N)         100       120         80       100         40       80         100       150         150       250 | Median value of $ E_z $ , V m <sup>-1</sup> Median value of $ E_z $ , V m <sup>-1</sup> Tashkent,<br>Uzbekistan<br>(41° N)           100         120         130           80         100         100           40         80         70           100         150         350           150         250         500 |

Table 3.4. Average thickness (m) of various types of stratiform cloud. Adapted from Imyanitov et al. (1971)

| Type of cloud | Single charge layer |     | Two charge layers |      | Multiple      |
|---------------|---------------------|-----|-------------------|------|---------------|
|               | ÷                   | _   | ±                 | Ŧ    | charge layers |
| St            | 200                 | 200 | 450               | 450  | 700           |
| Sc            | 260                 | 250 | 400               | 450  | 700           |
| As            | 650                 | 700 | 800               | 900  | 1500          |
| Ns            | 650                 | 700 | 950               | 1600 | 2000          |





