



# Instrumentation for TGF detection

M. Marisaldi, UiB, 23/05/2019





# What do we really know about elephants TGFs?





Credits: Michael Briggs, EGU 2014 Hamid Rassoul, Bergen, 2019

#### The discovery of TGFs





### The transient high-energy universe (including Earth)









0.1 ph/cm<sup>2</sup> x ~1 MeV ~1.6 10<sup>-7</sup> erg/cm<sup>2</sup>



Three distinct regimes, depending on which interaction type is dominant

- The cross section is material dependent  $\rightarrow$ strong constraints on detectors material choice
- E< ~200 keV: photoelectric effect is dominant
- ~200 keV < E < ~10 MeV Compton effect is dominant
- E > ~10 MeV pair production is dominant



- Effective area of a detector is the geometrical area that an ideal detector with detection efficiency 1 would have in order to detect the same number of counts as detected by the real detector
- For practical purposes:



- Depends on photon energy and incidence angle
- Typically evaluated by MC simulations using the detector's mass model
- Can define different effective areas:

total effective area (need assumptions on the incoming spectrum), photopeak effective area (strongly depends on type of interaction)

#### Why BATSE could detect TGFs









But...





- BATSE has 10x the effective area of Fermi GBM
- BATSE detected 79 TGFs in 9 years
- While Fermi GBM detects about 800 TGFs / year!
- Why???



- Two main data acquisition strategies:
  - Continuous acquisition (if telemetry budget allows it): all counts are collected and sent to ground
  - Triggered acquisition: data are collected and sent to ground only if a trigger condition is satisfied

If  $N_C$  in a time window  $\Delta t$  exceeds a certain threshold  $N_T$  --> a trigger is issued

$$N_C > N_T = n\sqrt{N_B}$$
 Where n  $\approx$  5,  $N_B$  number of background counts in  $\Delta t$ 

- In practice a trigger logic can be much more complicated
- The key parameter is the time window  $\Delta t$ : it must be close to the duration of the transient that we want to detect in order to allow for the maximum sensitivity



#### **CGRO - BATSE**



Triggered: Min ∆t = 64 ms 9 TGFs / year Can trigger only on very bright TGFs!

RHESSI



Continuous data acquisition **350 TGFs / year** 

#### Fermi - GBM



Triggered: Min  $\Delta t = 16$  ms 100 TGFs / year

Continuous data acquisition since 2012: 800 TGFs / year

AGILE



Triggered: Min  $\Delta t = 0.3$  ms 1000 TGFs / year







#### Detector material and system architecture







# **RHESSI - GeD**

**AGILE - MCAL** 







|                                               | RHESSI              | AGILE MCAL                                          | Fermi GBM                                   |
|-----------------------------------------------|---------------------|-----------------------------------------------------|---------------------------------------------|
| <b>Operative since</b>                        | 2002                | 2007                                                | 2008                                        |
| Orbit inclination<br>and altitude             | 38° 600 km          | 2.5° 540 km                                         | 26° 540 km                                  |
| Detector type                                 | HPGe                | CsI(Tl)<br>scintillator with<br>solid state readout | NaI(Tl) and BGO<br>scintillator with<br>PMT |
| Energy range                                  | 0.015 – 20 MeV      | 0.35 – 100 MeV                                      | 0.015 – 40 MeV                              |
| Effective area for<br>typical TGF<br>spectrum | 260 cm <sup>2</sup> | 220 cm <sup>2</sup>                                 | 160 cm <sup>2</sup> (1xBGO)                 |
| Acquisition type                              | continuous          | triggered                                           | continuous                                  |
| TGFs/year                                     | ~340                | ~800                                                | ~800                                        |



# A GOOD TGF DETECTOR



- FEE takes care of the first conversion of a charge pulse (output of a PMT or a solidstate detector), into a voltage signal that can subsequently be measured
- The FEE can be responsible for several instrumental effects that can significantly affect the measurements
- This is particularly true for TGFs, which deliver gamma-ray fluxes above the design limits of most detectors designed for astrophysics
- ALL TGFs observing missions so far are, to some extent, affected by instrumental effects driven by the FEE
- Misinterpretation of these instrumental effects can lead to wrong scientific conclusions (e.g. Pulse alteration leads to incorrect energy spectra reconstruction)

www.nuclear-power.net



Dead time



non-paralyzable

time





Radiologykey.com

**Pulse pile-up** 

# Tipycal instrumental effects (the real world)





AGILE MCAL FEE (Marisaldi+2019)

### Tipycal instrumental effects (the real world)













Roberts+2017



- All TGFs observing missions must be in LEO (the lower the better)
- Low orbital inclination:
  - Pros:
    - Fly over equatorial regions (high lightning activity)
    - High exposure  $\rightarrow$  TGF surface detection density
    - Can revisit the same thunderstorm in consecutive passages
  - Cons: Cannot explore high-latitude regions
- High orbital inclination:
  - Pros: Explore high-latitude regions
  - Cons: Spend a lot of time on regions with limited lightning activity









- Gamma-ray observations alone do not allow advancements in the TGF understanding anymore
- Coordinated observations of TGFs and lightning (in different wavelengths) are a must
- This can be achieved by correlation with ground-based observations (need microsecond level absolute timing accuracy), and/or by lightning instrumentation onboard the same space platform

#### **ASIM**

X and gamma

٠

- Optical (VIS e UV), cameras and photometers
- See presentation by N. Østgaard tomorrow



#### **TARANIS**

- X and gamma (+ electron discrimination)
- Optical, camera and photometers
- Radio receivers in various bands





- A good TGF detector is a combination of several factors:
  - Detector material and geometry
  - System architecture (spatial segmentation, ecc...)
  - Front-end electronics performance (instrumental effects mitigation)
  - Read-out and data acquisition strategy
  - Mission profile

• In the real world one usually needs to make compromises (tradeoffs) between wishes (science requirements) and available budgets