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Abstract Analysis of very low frequency lightning waveforms, or radio sferics, can contribute to research
into lower ionosphere perturbations and the corresponding atmospheric chemistry. Lightning waveforms
can also be characterized on the basis of their propagation distance from receivers in order to study radio
wave propagation. A bank of average waveforms, that is, the waveform bank, <1,000 km with a spatial
resolution of 10 km has been produced, based on the lightning waveforms recorded in Europe on 8 August
2014. These average lightning waveforms at different distances exhibit a sequence of consecutive maxima
resulting from ionospheric reflections, named sky waves. The spectral waveform bank shows a sequence of
consecutive modal maxima at different frequencies depending on distance. The Hilbert transform is applied
to produce complex lightning waveforms, which provide additional information to the original real
waveforms alone, that is, the instantaneous phase and frequency. The time differences calculated from the
instantaneous phases of complex lightning waveforms give the minimum arrival time difference error when
compared to other analyzed signal processing methods. The derivative of the instantaneous phase, that is,
the instantaneous frequency, represents the amplitude-weighted average of frequency components at
maximum amplitude according to theory and numerical simulation. In real experiments, the instantaneous
frequency can be understood as the median value of the real frequency distribution calculated at maximum
amplitude. It is found that the instantaneous frequencies at maximum amplitudes are distance dependent.
This finding might enable the development of a novel method to determine lightning distances in the future.

1. Introduction

Lightning is the strongest natural electromagnetic radiation source in the Earth’s atmosphere and it emits
electromagnetic waves in the frequency range from ~1 Hz to >300 MHz (e.g., Rakov & Uman, 2003; Rison
et al., 2016). Ground-based lightning location systems are essentially based on the received electromagnetic
waves and subsequent signal processing (e.g., Bitzer et al., 2013; Dowden et al., 2002; Höller et al., 2009; Lyu
et al., 2014; Nag et al., 2015; Rakov, 2013; Stock et al., 2014; Sun et al., 2016; Wang et al., 2016). For example,
the azimuth of an incident radio wave from a lightning discharge is determined by calculating the voltage
ratio received by two magnetic loop antennas, named magnetic direction finding (e.g., Füllekrug &
Constable, 2000; Horner, 1954, 1957; Krider et al., 1976). In the most commonly used lightning location
method, arrival time differences are extracted by different signal processing techniques from the lightning
waveforms recorded at different radio receiver stations (e.g., Cummins et al., 1998; Cummins & Murphy,
2009; Lee, 1986, 1990). The different signal processing techniques result in slightly different arrival times with
different corresponding lightning locations (Liu et al., 2016). Using a different time extraction point, for
example, the waveform peak or rising edge, and different data preprocessing, for example, wide or narrow
bandwidth or complex envelope, can all introduce slightly varying time differences. As a result, a better
understanding of the sferic, that is, the received broadband lightning waveform, is a prerequisite for improv-
ing lightning location accuracy.

Much research into ionosphere perturbations and atmospheric chemistry utilize broadband very low
frequency waveforms, in particular lightning waveforms (e.g., Cheng et al., 2007; Shao et al., 2013). The sferic
is a broadband electromagnetic impulse generated by a lightning discharge, which propagates through the
Earth-ionosphere waveguide. The perturbations in the D region caused by the variation of electron densities
will change the received sferic in the time and frequency domain. A collection of average lightning wave-
forms at different distances, named waveform bank, was introduced by Said et al. (2010). This method
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offers an opportunity to characterize sferics and to estimate arrival times. This idea has been adopted, and it is
extended in this work to produce a new type of waveform bank for further analysis.

The time-dependent sferic signal is treated as an analytic signal, or complex trace, to process the received
signal to determine the instantaneous phase and frequency at each sample in the time series (e.g., Taner
et al., 1979). It is more common to use the fast Fourier transform (FFT), or a short-time Fourier transform
(STFT), to calculate phases from the spectral coefficients at the harmonic frequencies fk = k/T, where k is
the harmonic number and T is the length of the time interval used for the FFT or STFT. As a result, the phases
inferred from the FFT or STFT represent average values over the time interval T = NΔt, where N is the number
of samples in that time interval and Δt is the sampling time interval. Given that the phase of a lightning sferic
is constantly changing (Füllekrug et al., 2016, Figure 2, right), an averaged phase can include unwanted infor-
mation that is introduced, for example, by the phase change during the time interval T, or by unwanted inter-
ference during that time interval. It is therefore interesting to investigate how useful the instantaneous phase
of a lightning sferic is which is determined for each individual sample and which should have the smallest
possible bias introduced by unwanted information. Therefore, this method will be applied here to a new
lightning waveform bank (<1,000 km) produced from data collected by a long-range lightning location
system described below. The timing accuracy of the instantaneous phase is compared with other methods
by using the speed of light as a reference. The derivative of the instantaneous phase is the instantaneous
frequency, which is used to study the relationship with the real frequency of the sferic determined by its
spectrum. The observed instantaneous frequency changes in the complex waveform bank are discussed
and related to the radio wave propagation with distance.

2. The Complex Waveform Bank
2.1. The Waveform Bank

Previous research associated with sferic waveform characteristics, including polarity estimation, cycle errors,
and peak current, has shown that received lightning waveforms that originate from a certain storm cluster
exhibit similar features (Said et al., 2010, Figure 1). Thus, a small deviation of lightning waveform shape indi-
cates a propagation over similar distances. A representative waveform is calculated by averaging each of the
lightning waveforms in one distance bin to reduce the noise in each average waveform and to acquire a more
pure lightning waveform that includes subtle propagation effects. Comparing the representative waveforms
at different distances is an effective method to study the propagation effects on lightning sferics.

Lightning locations are reported by the French lightning detection network Meteorage, which covers south-
western Europe and the western Mediterranean Sea. This network distinguishes cloud to ground (CG) light-
ning and intracloud lightning based on a linear discriminant analysis of different waveform parameters, and
the classification accuracy reaches 95% for negative CG lightning in France (Kohlmann et al., 2017). The elec-
tromagnetic waveforms of the lightning discharges were recorded from ~21:00 UT 8 August to ~03:00 UT on
9 August 2014 with four wideband digital low-frequency radio receivers located in Bath, Orleans,
Lannemezan, and Rustrel (Liu et al., 2016). The radio receiver records the electric field from a capacitive probe
with a sampling frequency of 1 MHz, an effective bandwidth from ~4 Hz to ~400 kHz and a timing accuracy of
~12 ns provided by a Global Positioning System disciplined frequency standard (e.g., Füllekrug, 2010;
Füllekrug et al., 2006, 2014, 2015; Mezentsev & Füllekrug, 2013; Soula et al., 2014).

During the 7-hr long recording, more than 150,000 CG lightning stroke waveforms from a mesoscale convec-
tive system over central France were recorded by the four sensors with peak currents ranging from �4 to
�40 kA, which were located 0–1,000 km away from each radio receiver (Liu et al., 2016). The lightning wave-
forms ranging from �1 to +4 ms around the occurrence of the lightning discharges were extracted from the
digital recordings based on the lightning locations and occurrence times reported by Meteorage. The time
t = 0 of the lightning waveforms is referenced to the propagation time at the speed of light calculated from
the great circle distance between the source and the receiver. This referencing procedure enables the calcu-
lation of one average waveform for each distance bin with a width of 10 km. Each distance bin consists of at
least 100 lightning waveforms. The resulting 100 average waveforms form the lightning waveform bank form
the basis for the subsequent data analysis (Figure 1, left). The differences between an average lightning
source current and the interfering signals from the local noise environment, man-made noise, and radio
transmissions are thereby minimized. The ionospheric conditions for the propagation of these lightning
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waveforms are similar, because all of the lightning sferic waveforms propagated during nighttime from the
source to the receiver.

The waveform bank exhibits an initial pulse from the ground wave and a sequence of subsequent maxima
from the ionospheric reflections or multihop sky waves. The first arrival sky wave can be observed after
~100-km propagation, and additional sky wave hops can be observed for longer distance propagation.
The energy of the lightning signals propagated along the ground path attenuate with distance due to ground
conductivity, while the energy of lightning signals from the ionospheric reflections are attenuated by longer
propagation distances and the ionospheric D-layer conductivity. The waveform bank shows distance-
dependent arrival times of the ground wave and ionospheric reflections, which can be explained by ray
theory (e.g., Carvalho et al., 2017; Qin et al., 2017; Schonland et al., 1940). The waveform bank shows the
ground wave arrival at 0 ms and the sky wave arrivals at increasing time delays for shorter distances, which
is in agreement with theoretical calculations that use a flat-Earth model or a spherical Earth model
(Schonland et al., 1940).

A spectral waveform bank can be calculated by averaging the complex spectra of all waveforms at the same
distance bin or from the spectra of the average lightning waveforms at each distance bin. Both averaging
procedures produce exactly the same result (Figure 1, right). The spectral waveform bank exhibits a sequence
of consecutive maxima in the frequency range up to 100 kHz. These consecutive relative maxima result from
the constructive superposition of numerous wave propagation modes, named modal maxima in the follow-
ing text. The modal maxima are separated from each other by distinct spectral minima that are characteristic
for the distance between the lightning discharges and the radio receivers. These features of the spectral
waveform bank result mainly from the lightning sferics and propagation effects because averaging the wave-
forms eliminates most of the interfering noise such that the best possible average lightning sferic waveform
is obtained. The spectral waveform bank is useful for understanding the propagation effects with distance,
and it can be used for theoretical modeling of radio wave propagation.

2.2. Complex Waveforms

The time-dependent radio signal can be treated as an analytic signal or complex trace. This allows the extrac-
tion of the envelope and instantaneous phase for each sample (e.g., Liu et al., 2016; Taner et al., 1979). The
complex trace can be obtained from the real valued recordings using the Hilbert transform. In practice, the
complex waveform can be calculated from the real signal by doubling the positive frequency and by elimi-
nating the negative frequency. This complex waveform is subsequently down converted by multiplying with
a frequency shift operator e�jΔωt that centers the spectrum at zero frequency. The shift frequency Δω is
normally set as the harmonic frequency which contains most of the energy of the target signal. For example,
the shift frequency of a radio transmission is normally the center frequency of its modulation. The shift

Figure 1. The average nighttime waveforms and the spectra of the average waveforms of negative lightning discharges at distances from 10 to 1,000 km. (left) Each
average waveform at a given distance is calculated from more than 100 events. The time axis is referenced to t = 0 corresponding to a propagation at the speed
of light from the source to the receiver. A sequence of consecutive maxima resulting from the ionospheric reflections (or multihop sky waves) appear from
~100-km distance onward, and the time differences between ground wave and sky waves are smaller for larger distances. (right) The sequence of consecutive
modal maxima (yellow and red) is separated by distinct minima (black) which are characteristic for the distance between the radio receiver and the lightning
discharge. The area of the blue square is used for the analysis of the instantaneous frequencies (compare to Figure 6).
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frequency of lightning can be set as 10 kHz as the return stroke deposits
most of its energy around this frequency (Fullekrug et al., 2013). The final
complex waveform can be determined after applying a low-pass filter to
the down converted signal in order to increase the signal-to-noise ratio

F tð Þ ¼ f tð Þ þ jH f tð Þð Þð Þe�jΔωt ¼ A tð Þe jφ tð Þ (1)

where A(t) is the time dependent amplitude envelope and φ(t) is the time
dependent instantaneous phase.

In this way, the complex waveform bank can be calculated from a real
waveform bank by use of the Hilbert transform. The complex waveform
from 2 to 18 kHz of an average lightning signal at 300 km is shown in
Figure 2. This 3-D trace of a lightning waveform illustrates the amplitude
envelope and instantaneous phase variation over time. In the beginning,
the phase of the complex trace is chaotic and the amplitude is low when
there is no lightning signal. The arrival of ground wave and sky waves
leads to large signals, which are well above the noise. These large signals
result from a strong lightning discharge, so that the amplitude is increased
and the phase is moved toward a specific value. In this example, the
complex waveform rotates anticlockwise, which means that the instanta-
neous phase is decreasing during the pulse arrival. The signal returns to
chaotic behavior after the lightning event.

3. Instantaneous Phase

Different information can be extracted from the complex waveform than
from the real-valued signal, including the envelope of the complex trace
and the instantaneous phase. The time differences calculated from the
instantaneous phase between two lightning waveform peaks can be
extracted by use of the transfer function calculated from the ratio between
the two complex values at the peak of the waveform. Normally, the time
difference between two lightning waveforms is constrained by the
sampling frequency. In order to achieve the subsample time differ-
ence δt = δφ/ω, the two waveforms are time shifted first in order to super-
pose the amplitude peaks. The instantaneous phase difference δφ can
then be extracted from the transfer function at the peak samples of the
two waveforms δφ = φmax1 � φmax2. This time difference inferred from
the instantaneous phase achieves subsampling accuracy after taking into
account cycle ambiguities, if any.

The propagation time delay relative to the speed of light using different
signal processing methods can be compared by using the lightning wave-
form bank. The average lightning waveforms from 310 to 600 km are com-
pared with the average waveform at 300 km by using four different time
extraction methods (Figure 3). The time offset δt is the measured time
difference Δtminus the nominal time difference calculated for a propaga-
tion velocity at speed of light Δt = Δd/c, where Δd is the distance differ-
ence with respect to the lightning sferic waveform at 300-km distance,
that is, Δd = d � 300 km with d ranging from 310 to 600 km. All these
methods determine the time offset that is measured with reference to
the propagation time between the source and the receiver at the speed
of light. The first three methods extract the occurrence times by waveform
cross correlation, from the peak of the filtered data (5–15 kHz), and from
the peak envelope of the complex trace. The average values of the abso-
lute time offsets over all distance differences from 10 to 300 km with
respect to the speed of light by using these three methods are ~2.33,

Figure 2. Isometric diagram of an average complex waveform of lightning at
a distance of 300 km. The 3-D trace of the complex lightning signal from 2 to
18 kHz exhibits large amplitudes when the ground wave and sky waves
are arriving. The rotation direction of the complex trace is anticlockwise,
which means the instantaneous frequency is smaller than center frequency.
The blue lines show the real part (Ar) and imaginary part (Ai) of the complex
lightning waveform. The thin red line is the amplitude envelope of the
complex waveform.

Figure 3. The time offsets between different propagation distance differ-
ences with respect to a speed of light propagation. The average lightning
waveforms from 310 to 600 km are compared with the average lightning
waveform at 300-km distance. The time offset δt is the measured time dif-
ference Δt minus the nominal time difference inferred from a wave propa-
gation velocity at speed of light Δd/c, and the distance difference Δd is
measured relative to the lightning waveform at 300-km distance, that is,
Δd = d� 300 km with d ranging from 310 to 600 km. By comparing different
signal processing methods, the average value of the absolute time offset by
using the instantaneous phase of the complex lightning waveform (red) is
less than just using the amplitude envelope (blue) or using the amplitude of
the real signal (black) or cross correlating lightning waveforms (green). The
corresponding average values of the absolute time offset are shown by
the dashed lines.
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~2.63, and ~4.23 μs, respectively, with corresponding ranges of [�3, 6], [�4, 5], and [�8, 11] μs. The average
value of the absolute time offset by measuring time differences with the instantaneous phase is only ~2.08 μs
with a corresponding range [�2.78, 5.62] μs (Figure 3). In the case of a lightning location system using a pro-
pagation velocity at the speed of light, the time accuracy is therefore slightly improved by calculating the
instantaneous phase from the complex waveform. The time offsets at different distances are neither constant
nor distance dependent, which is suggested to be investigated in future analyses. One possible reason is the
inappropriate presupposed wave propagation velocity in comparison, that is, the speed of light, because it is
found that the lightning electromagnetic wave may propagate at a varying phase propagation velocity (Liu
et al., 2016).

4. Instantaneous Frequency

The different rotation direction of complex waveforms may indicate a different elevation angle of the inci-
dent lightning sferic (Füllekrug et al., 2016, Figure 2, right). The rotation direction is the polarity of the deriva-
tive of the instantaneous phase in a complex waveform. This time-dependent derivative fi = dφ/dt is called
the instantaneous frequency (Taner et al., 1979). The instantaneous frequency indicates the phase change
for each sample with reference to the center frequency of the signal. The rotation direction is anticlockwise
when the instantaneous frequency is smaller than the center frequency, and it is clockwise when the instan-
taneous frequency is larger than the center frequency. The benefit of using instantaneous frequency for
range estimation is the high time resolution and also the frequency resolution. For example, the frequency
resolution of the result from the STFT of a 1-ms long time interval is only 1 kHz, without zero padding, while
the instantaneous phase has a temporal resolution with the sampling time interval Δt = 1 μs. The calculated
result has no constraints on the frequency resolution within the passband of the low-pass filter applied to the
down converted signal. A convenient way of computing the instantaneous frequency fi from the complex
trace C is to compute the derivative of the arctangent function

f i ¼ 1
2π

d
dt

arctan
Im Cð Þ
Re Cð Þ

� �
; (2)

which results in

f i ¼
Re Cð Þ d Im Cð Þð Þ

dt � Im Cð Þ d Re Cð Þð Þ
dt

2π Re Cð Þ2 þ Im Cð Þ2
� � : (3)

A signal that consists of two frequency components, f1 and f2, is analyzed in order to explore the relationship
between the instantaneous frequency and the two frequency components. Assuming C1 and C2 are two
single sinusoid complex signals, the instantaneous frequency of the superposed signal is

f i ¼ 1
2π

d
dt

arctan
Im C1ð Þ þ Im C2ð Þ
Re C1ð Þ þ Re C2ð Þ

� �
; (4)

which results in

f i ¼ 1
2π

d
dt

arctan
A1 sinαþ A2 sinβ
A1 cosαþ A2 cosβ

� �
; (5)

where A1 and A2 are the amplitudes of the two sinusoid signals and α and β are the phases of the sinusoids C1
and C2. The derivatives of α and β are f1 and f2. The explicit calculation of the derivative in equation (5) yields

f i ¼ A1 cosαþ A2 cosβð Þ A1f1 cosαþ A2f2 cosβð Þ þ A1f1 sinαþ A2f2 sinβð Þ A1 sinαþ A2 sinβð Þ:
A1 cosαþ A2 cosβð Þ2 þ A1 sinαþ A2 sinβð Þ2 (6)

In order to simplify this result, we assume that α = β when the amplitude of the superposed signal is maximal.
In this case, it follows that

f i ¼ A1f1 þ A2f2
A1 þ A2

: (7)

Similarly, we assume that α = π + β when the amplitude of the superposed signal is minimal. In this case, it
follows that
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f i ¼ A1f1 � A2f2
A1 � A2

: (8)

In the case where the instantaneous frequency of a signal consists of N fre-
quency components

f i¼ 1
2π

d
dt

arctan

PN
j Aj sinαjPN
j Aj cosαj

 !
; (9)

which results in

f i¼
PN

j Ajf j cosαj
� � PN

j Aj cosαj
� �

þ PN
j Aj sinαj

� � PN
j Ajf j sinαj

� �
2π

PN
j Aj cosαj

� �2
þ PN

j Aj sinαj
� �2� � ;

(10)

where Aj are the amplitudes of the sinusoid signals and αj are the phases of
these sinusoids. The derivatives of αj are the instantaneous frequencies fj
of the sinusoids. If the phases of all sinusoids are the same, that is, αj = α ∀ j,
then

f i¼
PN

j Ajf jPN
j Aj

: (11)

These results show that the instantaneous frequency is equal to the amplitude-weighted frequency in the
frequency domain when the amplitude of the complex signal is maximal. The instantaneous frequency
may be singular when the denominator with the sum of amplitudes is zero.

The instantaneous frequency of two frequency components is confirmed by simulating a superposed signal
y = sin (2π * 100t) + 2 sin (2π * 120t) (Figure 4). The signal is down converted by 110 Hz to compute the com-
plex waveform. The instantaneous frequency is calculated directly from the derivative of the arctangent func-
tion (equation (3)). The instantaneous frequency of a single sinusoid signal is a real constant frequency. The
instantaneous frequency of the superposed signal varies depending on the amplitude of the complex wave-
form. The instantaneous frequency is equal to the amplitude-weighted average value calculated by equa-
tion (7) when the amplitude is maximal. The instantaneous frequency is not within the range of the two
frequency components and equal to the result calculated by equation (8) when the amplitude is minimal.
This simulation result confirms that the instantaneous frequency represents the amplitude-weighted average
of the true frequencies in each sample when the amplitude is maximal. The instantaneous frequency
provides no meaningful information about either of the two frequency components when the amplitude
is minimal. Therefore, for a real wideband signal, such as lightning, the instantaneous frequency is only a
reliable indicator of the true frequency spectrum when the amplitude is maximal.

5. Instantaneous Frequencies of Lightning Waveforms

The instantaneous frequency of the average lightning waveform at a distance of 300 km is calculated for
different frequency bandwidths (Figure 5). At the beginning, the instantaneous frequency is chaotic due to
the noise and large sensitivity of the instantaneous phase, and it is only relatively stable during the lightning
pulses’ arrival, which is confirmed by the simulation result in the previous section. In order to emphasize the
results during maximum amplitude, the amplitude weighted average instantaneous frequency has been
calculated by averaging n = 20 samples of the dot product between the amplitudes and their instantaneous
frequencies divided by the sum of all amplitudes. This amplitude weighted average of the instantaneous
frequency with empirically selected n essentially is a moving average to avoid the frequency variation due
to the sudden phase jump. While this moving average has tiny effect during lightning pulses, the instanta-
neous frequency is stable at that period. This amplitude weighted average instantaneous frequency is likely
to be of benefit for a detailed monitoring of the frequency distribution during the lightning period.

The instantaneous frequency of the average lightning waveform propagated over 300 km calculated from 2
to 18 kHz (Figure 2) shows that the instantaneous frequency is smaller than the center frequency of 10 kHz

Figure 4. The instantaneous frequency of a simulated superposed signal
that consists of two frequency components at 100 and 120 Hz (black solid
and dashed lines). The calculated instantaneous frequency of the averaged
signal (blue line) is more stable and equal to the amplitude-weighted
average value calculated by equation (7) when the amplitude is maximal
(red line).

10.1002/2017RS006451Radio Science

LIU ET AL. 453



when the amplitude is maximum (Figure 5, upper left). This explains why the rotation direction of the
complex waveform during lightning period is anticlockwise. The result means that the median value of the
amplitude-weighted instantaneous frequency from 2 to 18 kHz during the lightning period is below
10 kHz according to the theoretical analysis explained in the previous section. However, there are several
modal maxima in the spectra within this frequency range (Figure 1, right). Each peak in the spectrum may
vary differently during the lightning period. As a result, it is better to concentrate on one modal maximum
in the spectrum, so that the small variation of each peak during the lightning period can be observed
individually. The instantaneous frequency calculated from a narrowband frequency range around one
peak in the spectrum is much less variable (Figure 5, lower left). The instantaneous frequency around the
lightning pulse is almost constant, indicating that the frequency distribution during the lightning period is
stable. It is noted that the stability of instantaneous frequency is more important than the value of
instantaneous frequency, because the averaging value of the frequency distribution may be more close to

the center frequency when there is no strong signal input.

As a result, the instantaneous frequency at the maximum amplitude is
selected to represent the median frequency during the lightning per-
iod. The instantaneous frequencies at the maximum amplitudes of
the lightning waveforms from similar distances are compared to
determine the differences between individual events (Figure 5, right).
As discussed above, a narrow frequency bandwidth of 4 kHz is chosen
with a varying center frequency, in order to constrain the target fre-
quency range around the same modal maximum in the spectrum.
These varying center frequencies are selected from the maxima of
the second modal peak, which always fall between 10 and 20 kHz in
the spectrum, for example, at 300, 350, and 400-km distance. The
instantaneous frequencies at the maximum amplitudes are calculated
for all the waveforms recorded by one station, and the distribution of
the instantaneous frequencies at the same distance bin is a clearly
peaked distribution (Figure 5, right). This indicates that the instanta-
neous frequencies at one distance bin are range limited. The center
frequencies associated with the main peaks of the distributions are
clearly distance dependent as a result of the radio wave propagation.
In other words, the instantaneous frequency inferred from the

Figure 5. Analyses of instantaneous frequencies inferred from lightning waveforms. (left) The instantaneous frequency (black dashed line) calculated from a light-
ning waveform with two frequency bandwidths, (top) 2–18 kHz and (bottom) 8.8–12.8 kHz, confirms the theoretical result that the instantaneous frequency is more
stable when the amplitude of the signal is maximal (blue line). The amplitude weighted average instantaneous frequency (red line) smoothens the original
instantaneous frequency. The instantaneous frequency calculated from a 4-kHz bandwidth around onemodal maximum in the spectrum is less variable than using a
bandwidth from 2 to 18 kHz that contains many modal maxima. (right) The distributions of the instantaneous frequencies at maximum amplitudes inferred from all
the lightning waveforms recorded by one station at several distance bins are clearly peaked distributions.

Figure 6. The instantaneous frequencies (red line) at maximum amplitudes of the
average lightning waveforms at distances ranging from 300 to 600 km (blue
square) follow the modal maximum in the spectra well.
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average lightning waveform can be used to represent the source receiver distance.

This idea can be tested by extending the analysis with the average lightning waveforms from 300 to 600 km
at each distance bin separated by 10 km in the frequency range 10–20 kHz (Figure 6). The calculated instan-
taneous frequencies are obviously distance dependent and follow the secondmodal maximum in the spectra
well. This excellent result strongly suggests that the instantaneous frequency has a promising potential appli-
cation to determine the lightning distance from a single radio receiver.

6. Discussion and Conclusion

The lightning waveform bank produced for distances up to 1,000 km with a spatial resolution of 10 km is well
suited for applications to study long range lightning location systems and electromagnetic wave propaga-
tion. For most lightning location systems, the baseline is smaller than 1,000 km so that we can simulate
and examine a new location algorithm or new site deployments. For wave propagation and ionospheric
research, this waveform bank is valuable as a reference for modeling (e.g., Pasko & Fullekrug, 2011). In parti-
cular, spectra have been calculated across a lightning waveform bank, which reveal a sequence of consecu-
tive modal maxima depending on distance and frequency. This waveform bank is generated from lightning
recordings of a thunderstorm in Europe, which may not be identical to waveform banks calculated for other
geographical areas. The geometry of the experiment limits the waveform bank to propagation distances with
less than 1,000 km. However, the general method of producing the waveform bank and the spectral wave-
form bank is applicable to other locations and longer distance than 1,000 km in the future. In addition, this
method is also applicable to studies of other types of lightning, such as intracloud lightning discharges.

To the best of our knowledge, the complex waveform bank analysis of lightning is used for the first time, and
it provides an opportunity to extract the instantaneous phase and instantaneous frequency. The distance
discrimination with the instantaneous frequency is just one potential application of this complex waveform
bank. The instantaneous frequency may also be discriminated by different arrival azimuths, elevation angles,
or different times of day, given more data. For example, it has been observed that a different incident eleva-
tion angle indicates a different rotation direction in the complex waveform of the lightning, that is, a different
instantaneous frequency (Füllekrug et al., 2016, Figure 2, right). By using the instantaneous frequency for
distance determination, the lightning signal can be first approximated within <50 km, because the instanta-
neous frequency can vary, for example, between 400 and 450-km distance (Figure 6). This uncertainty is very
likely due to the lack of data at these distances, which could be improved by collectingmore data with longer
recordings. On the other hand, the instantaneous frequency is calculated from lightning waveforms that
include interference from the local radio noise environment of each station. It is shown that the distribution
of apparent frequencies from lightning at similar distances is a clearly peaked distribution if they are recorded
at the same station (Figure 5, right). Between different stations, the distributions may differ slightly, most
probably because of varying local radio environments and/or different propagation paths. As a result, the
distance determination by using instantaneous frequency may be more accurate if the instantaneous
frequencies are derived from each station separately. It is noted that the instantaneous frequency in
maximum amplitude is equal to the amplitude weighted average frequency, such that waveform spectra
inferred from STFTs with suitable parameters might result in similar distance dependencies.

In summary, this study has offered several results: (1) The average lightning sferic waveforms from different
distances exhibit a sequence of consecutive maxima resulting from the ionospheric reflections, which can be
used for radio propagation studies, lightning modeling, lightning detection simulation, etc. (2) In the spectral
waveform bank, the sequence of consecutive modal maxima is separated by distinct minima at different
frequencies and distances. (3) Long-range lightning location can achieve subsampling time accuracy by
using the instantaneous phase of the complex lightning sferic waveform. (4) The instantaneous frequency
calculated from average lightning waveforms has been shown to be distance dependent, and it therefore
has the potential to be used for lightning distance determination.
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