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Abstract A new statistical modeling technique for determining the global ionospheric convection is
described. The principal component regression (PCR)-based technique is based on Super Dual Auroral
Radar Network (SuperDARN) observations and is an advanced version of the PCR technique that Waters et al.
(2015, https//:doi.org.10.1002/2015JA021596) used for the SuperMAG data. While SuperMAG ground
magnetic field perturbations are vector measurements, SuperDARN provides line-of-sight measurements of
the ionospheric convection flow. Each line-of-sight flow has a known azimuth (or direction), which must be
converted into the actual vector flow. However, the component perpendicular to the azimuth direction is
unknown. Our method uses historical data from the SuperDARN database and PCR to determine a fill-in
model convection distribution for any given universal time. The fill-in data process is driven by a list of state
descriptors (magnetic indices and the solar zenith angle). The final solution is then derived from a spherical cap
harmonic fit to the SuperDARN measurements and the fill-in model. When compared with the standard
SuperDARN fill-in model, we find that our fill-in model provides improved solutions, and the final solutions
are in better agreement with the SuperDARN measurements. Our solutions are far less dynamic than the
standard SuperDARN solutions, which we interpret as being due to a lack of magnetosphere-ionosphere
inertia and communication delays in the standard SuperDARN technique while it is inherently included in our
approach. Rather, we argue that the magnetosphere-ionosphere system has inertia that prevents the global
convection from changing abruptly in response to an interplanetary magnetic field change.

Plain Language Summary The ionospheric convection is one of the fundamental electrodynamic
physical parameters associated with the Earth interactions with space. In this paper we outline a
fundamentally new technique for determining the global ionospheric convection. The principal component
regression-based technique is based on Super Dual Auroral Radar Network (SuperDARN) observations and is
an advanced version of the principal component regression technique that Waters et al. (2015, https//:doi.
org.10.1002/2015JA021596) used for the SuperMAG data. Our method uses all historical data from the
SuperDARNdatabase andprincipal component regression to determine a fill-inmodel convection distribution
for any given universal time. The fill-in data process is driven by a list of state descriptors (magnetic indices and
the solar zenith angle), and the final solution is then derived from a fit to the SuperDARN measurements and
the fill-in model. When compared with the standard technique, we find that our provides improved solutions.

1. Introduction

Over the last two decades the Super Dual Auroral Radar Network (SuperDARN) collaboration (e.g., Chisham
et al., 2007; Greenwald et al., 1985) has provided the primary source for measurements of the large-scale
ionospheric convection. The network of high-frequency radars provides line-of-sight (LOS) Doppler velocity
measurements. Currently, 23 radars are operational in the northern hemisphere and 12 in the southern hemi-
sphere. Each has a wide field of view of ~50°. In standard configuration, backscatter is received from 16
beams each with some 75 range gates. Each radar provides a full field-of-view scan with a temporal resolution
of 1–2 min and the typical spatial resolution for a given range gate of 45 km in the LOS direction.

While this system has the capability of providing continuous and global coverage of ionospheric convection,
there are two inherent complications: sparse and variable spatial coverage and LOS measurements (not full
vector flows). Most studies are interested in the characteristics of the flows and not the LOS flow for a given
beam direction. Thus, the LOS velocity measurements need to be used to derive a global convection pattern,
which then provides the scientific data product to the research community. This is a nontrivial challenge that
has beendiscussed inmanypapers (e.g., Fiori et al., 2010; Ruohoniemi&Baker, 1998; Ruohoniemi&Greenwald,
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1995, 1996, 2005; Shepherd&Ruohoniemi, 2000). The standard SuperDARN
data processing uses an interplanetary magnetic field (IMF)-driven, fill-in
data model, which combined with the measured LOS flows allows a basis
function fit. The purpose of the fill-in data model is to provide data in
regions of sparse or no measurements to ensure that the basis function
solution is constrained. The impact of the original fill-in model on the
magnetosphere-ionosphere (M-I) community cannot be overstated, and
the solutions have been utilized in a vast number of studies and
applications.

The question is how such a fill-in model should be derived. The present
algorithm was developed from the initial work of Ruohoniemi and Baker
(1998) and advanced by Shepherd and Ruohoniemi (2000). The original
work was based on measurements from a single radar, which was orga-
nized by the IMF magnitude and orientation. Discrete bins were defined
(e.g., positive IMF By and positive IMF Bz), and global average potential dis-
tributions were derived for each bin. For a given event the IMF conditions
define which fill-in model should be combined with the measured LOS.
This approach has been refined (e.g., Cousins & Shepherd, 2010;
Ruohoniemi & Greenwald, 2005) using data from more radars and more
IMF bins. However, the fundamental assumption remains; that is, there is
a causal relationship between the IMF and the ionospheric convection.
Global solutions based on principal component analysis (e.g., Cousins,
Matsuo, & Richmond, 2013; Grocott et al., 2012; Kim et al., 2012) have been
derived although it should be noted that Cousins et al. (2013) found that
using all 30 modes only explained 77% of the variance.

The vast majority of past studies have utilized IMF to organize the data.
This implies a cause-and-effect approach where the solar wind is the cause
and the ionospheric convection is the effect. Such an approach is compli-
cated by several inherent complications (discussed in section 4.2) none of
which are trivial. We have chosen to use a fundamentally different

approach that does not include IMF and thus is not subject to these complications.

The purpose of this paper is to use the sparse SuperDARN LOS measurements to provide global solutions of
the convection electric field. As a secondary purpose, the solutions are compared with those currently pro-
vided by the SuperDARN community (through the Virginial Tech website, http://superdarn.org/tiki-index.
php) and argue that our technique provides improved solutions. Section 2 outlines the SuperDARN techni-
que, section 3 describes the multilinear-regression technique we use to derive the fill-in data, section 4 is
the discussion and validation, and finally, we summarize and list our conclusions in section 5.

2. Deriving the Global Convection Pattern

The basic problem with the measurements provided by the SuperDARN high-frequency radars is converting
the sparse nonuniformly distributed line-of-sight flows (one vector velocity component) to global convection
patterns on minute time and ~1–2° spatial scales. The SuperDARN software developed over the last few dec-
ades consists of the FITACF routine that calculates the measured LOS flows, filtering aimed at removing
ground scatter and erroneous LOS flows, and finally, a software package that derives the ionospheric convec-
tion distribution from the filtered LOS flows. In our technique the global convection is derived in four basic
steps as illustrated in Figure 1.

Step 1: Obtain LOS velocity measurements.

Step 2: Filter LOS measurements.

Step 3: Convert LOS measurements to vector flows.

Step 4: Derive the global convection pattern.

Figure 1. Flow chart showing the basic steps in deriving the global convec-
tion pattern (see text for discussion).
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The focus of the present paper is steps 3 and 4. Step 1 has been examined
by Ponomarenko andWaters (2006), who described a list of recommended
improvements to the FITACF data processing package (we have used ver-
sion 5.0). Step 2 involves the identification of backscatter type and location
and is briefly discussed below. Steps 3 and 4 are completely different from
previous SuperDARN techniques and are given a more thorough descrip-
tion below in Figure 2.

2.1. STEP 1: Obtain LOS Velocity Measurements

The FITACF software package derives the LOS flows from the autocorrela-
tion function of the backscattered radar signals, for each range gate of
each beam of every radar. This set of routines provides the LOS Doppler
velocity, spectral width, and signal-to-noise ratio. Ponomarenko and
Waters (2006) discussed improvements to this technique, and we refer
to that paper for a thorough discussion of how the LOS flows are derived
and estimate of the uncertainties. In this paper we simply use the LOS data
provided by the FITACF routines.

2.2. STEP 2: Filter LOS Measurements

The LOS velocity measurements provided by FITACF may be divided into
three categories: (i) ionospheric convection, (ii) ground scatter, and (iii)
erroneous data.

In order to derive the ionosphere convection, erroneous data and ground
scatter must be removed. We have not addressed this problem and
instead accepted the standard SuperDARN filtering technique. The revised
model is thus derived from the same set of LOSmeasurements that is used
for the standard SuperDARN models released by Virginia Tech (http://
superdarn.org/tiki-index.php).

Several attempts have been made to identify ground scatter, and currently, the SuperDARN data include a
ground scatter identifier flag that is intended to identify measurements that are due to ground scatter. The
process is illustrated in Figure 6 of Ponomarenko et al. (2007). For the present, this flag is used to exclude
ground backscatter. Poor quality backscatter with large uncertainties is also excluded using the error esti-

mates provided by the FITACF SuperDARN software.

2.3. STEP 3: Convert LOS Measurements to Vector Flows

The procedure for converting the measured LOS flows to vector flows
was reviewed and is different to the SuperDARN technique
(Ruohoniemi & Baker, 1998; Ruohoniemi & Greenwald, 1996) currently
made available from Virginia Tech (http://superdarn.org/tiki-index.php).
The measured LOS flows are combined with the fill-in vector flow (see
section 3 for an explanation of how these flows are derived) to obtain
a best fit solution to the vector flow. This is similar to the method used
by Ruohoniemi and Greenwald (1995, 1996). For the revised algorithm,

the vector flows (VSD ) are derived from a weighted fit to the vector

fill-in flow (VPCR, see Figure 2 and section 3) (VPCR) and the SuperDARN
measured LOS flows (USD, LOS) by minimizing the error between the

resulting vector flow, VSD, and the inputs USD, LOS and VPCR:

error ¼ USD;LOS � VSD·bka
���

���þ VPCR � VSD

�� �� (1)

where bka is the unit vector in the beam direction (azimuth). The standard
gradient-expansion algorithm provided by IDL, “Curvefit” (Marquardt,
1963), was used to compute a nonlinear least squares fit and weight
the error toward the actual measurement, USD, LOS, using a factor of 3.

Figure 3. We derive the vector flows (VSD) using a weighted fitting to the vec-
tor fill-in flow (VPCR) and the Super Dual Auroral Radar Network measured
line-of-sight (LOS) speed (USD, LOS). We minimize the sum of the two errors
while weighting error 1 higher than error 2 (the Curvefit routine is used, and
error 1 is given a weight of 3).

Figure 2. Flow chart showing the basic steps in deriving the principal com-
ponent regression (PCR) model vector flows (see text for discussion).
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A higher factor minimizes USD;LOS � VSD·bka
���

���, while a lower factor minimizes VPCR � VSD

�� ��. The value 3 was

carefully chosen by evaluating probability density distributions of the two terms on the right side of
equation (1) as a function of the weight factor.

One of the advantages of this approach is that any number of flow vectors and LOS flows can be combined
and any appropriate weights can be assigned to the input data. Further, it is computationally efficient.

2.4. STEP 4: Derive the Global Convection Pattern

With the measured LOS flows filtered and converted to vector flows, the problem is to derive the global con-
vection pattern from the sparse nonuniformly distributed measurements. Furthermore, the number of LOS
flows varies wildly over time and large spatial regions may be without any measurements. These complica-
tions must be addressed in order to derive the global convection pattern. In line with previous SuperDARN
models, this is achieved by combining the measurements with fill-in data. The procedure for obtaining these
fill-in data is different from the present SuperDARN technique.

Our technique is an advanced version of the multilinear regression approach that Waters et al. (2015) used for
the SuperMAG data (Gjerloev, 2012). In applying that technique to SuperDARN data we are faced with several
complications: (1) SuperDARN provides LOS flows, while SuperMAG provides vector measurements; (2)
SuperDARN requires significant filtering of the LOS flows to remove ground scatter and erroneous data; (3)
the locations of SuperDARN measurements are constantly changing, while SuperMAG provides long uninter-
rupted time series; and (4) SuperDARN location of backscatter is ambiguous, while SuperMAG observations
are fromwell-known fixed locations. These differences (in particular the first) require some nontrivial changes
from the technique published by Waters et al. (2015).

Finally, we should mention that while it seems reasonable to use magnetic indices to derive ground-level
magnetic field perturbation, it is not as obvious that those same indices also provide a means to derive
ionospheric convection.
2.4.1. Combining Measured LOS and Model Flows
In order to derive the final solution, spherical cap harmonics are fitted to the derived SuperDARN vector flows

VSD and the fill-in vector flows VPCR. The main purpose of the fill-in flows is to constrain the spherical cap har-
monics solution (Haines, 1985). If sufficient LOS measurements were available and if these were more or less
uniformly distributed, there would be no need for the fill-in vector flows. As described in section 2.3 a second-
ary purpose of the fill-in model is to convert the LOS flows to vector flows.

The fill-in model is thus used twice: first to derive vector flows,VSD, and second to derive global solutions (see

Figure 1). To ensure that the final solution is measurement driven, the VSD are weighted higher than the

model-derived VPCR. This was ensured by evaluating the two terms (see Figure 3):

VPCR � VSD

�� �� and USD;LOS � VSD·bka:
���

���

for a list of weights ranging from 1 to 10. A higher weighting will minimize the second term, while a lower
weighting will minimize the first term. Calculating solutions for a full day allow us to derive the distribution
of these two terms. The choice of 3 was made since the second term is then in agreement with expected
measurement uncertainty.

Furthermore, the fill-in vectors are deleted if they are within 100 km of a measurement. The actual spatial
resolution of the SuperDARN measurements are typically stated as 40–50 km although this is complicated
by a list of factors (e.g., deviation between the actual propagation from the assumed straight line) as well
as the smearing caused by the median filtering (see section 4.4).

Finally, it should be noted that our technique does not require this final spherical harmonic fit. If a
gridded solution is sufficient for an investigation, then there is no need to perform the spherical
harmonic fit.

3. Deriving the Fill-in PCR Model

The fill-in data are obtained using a principal component regression (PCR) approach, similar to that
described for SuperMAG data by Waters et al. (2015). However, for SuperDARN data, the location of the
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LOS velocity measurements and the component of the actual flow changes. Therefore, additional steps
are required, compared with the SuperMAG method. The main difference is that for SuperMAG data,
we determine multilinear solutions to two components (geographic north and east), while for
SuperDARN, we fit to 36 azimuth components covering the 360°, and the vector is then determined by
a cosine fit to these 36 solutions.

The fill-in velocity data are derived independent of any IMF data, as follows:

PCR-1 Derive PCR model β-coefficients.
PCR-2 Calculate azimuth-dependent flows.
PCR-3 Derive PCR model vector flows.

These three basic steps are illustrated in Figure 2.

3.1. PCR-1: Derive PCR Model β-Coefficients

The coefficients are derived from historic filtered SuperDARNmeasurements. All the LOS flowmeasurements
obtained over 1994–2017 from the northern hemisphere are binned by an equal area magnetic latitude
(MLAT)-magnetic local time (MLT) grid (Ruohoniemi & Greenwald, 1996) in addition to the azimuth of the
radar beam azimuth. The Altitude Adjusted Corrected Geomagnetic (AACGM) coordinates (Baker & Wing,
1989) were used for the spatial organization or binning of the LOS measurement, but it is important to note
that the azimuth directions for the LOS measurements are in geographic coordinates. All vectors and basis
function calculations are thus completed in an orthogonal coordinate system (see section 4.3.1 for a discus-
sion of this problem).

The regression model is given by

UPCR;a ¼ β0 þ β1P1 þ…þ βkPk þ ϵ (2)

where UPCR, a are the fitted velocity components at a given MLT, MLat, and azimuth (a) which is given by the
radar beam orientation; the Pk are eigenvectors of the covariance matrix derived from the magnetic indices
and solar zenith angle (SZA) values that represent the independent variables; βk are the regression coeffi-
cients; and ϵ are the model errors assumed to have zero mean.

The βk are derived from all northern hemisphere historic LOS measurements. We derive the coefficients for
each radar, beam, and range gate (here referred to as an ID). For each LOS measurement we know the posi-
tion and azimuth as well as the list of eigenvectors, Pk. With the current number of SuperDARN radars, the
number of contributing range gates (UPCR, a solutions) at a given azimuth varies between zero and 20. For
a given MLT and MLat bin we thus get a fairly large number of UPCR, a solutions, which then has the distinct
advantage that we can determine to what extent a particular ID is statistically in agreement with all other
contributions. In other words, an objective quality evaluation of all ID’s can bemade. In addition, this also pro-
vides some robustness to the subsequent fitting (PCR-3; section 3.3).

The result is a very large set of β coefficients that are determined from the complete set of historic northern
hemisphere (filtered) LOS measurements:

β ¼ β MLT;MLat; azimuth; IDð Þ (3)

Table 1
List of State Descriptors Used to Derive the Fill-in Model

Parameter Explanation

SMLD,S SML (SuperMAG equivalent of AL) derived from stations located under the dark and sunlit
ionosphere, respectively

SMUD,S SMU (SuperMAG equivalent of AU) derived from stations located under the dark and sunlit
ionosphere, respectively

SMR � LT SMR (SuperMAG equivalent of SYM-H) derived from stations located in four local time regions
SYM � D Longitudinally symmetric (SYM) disturbance index for D-component
ASY � D,H Longitudinally asymmetric (ASY) disturbance index for D- and H-component
SZA Solar zenith angle

Note. Some are SuperMAG versions of the IAGA approved indices and others are IAGA approved indices.
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The drivers or state descriptors, Pk, used to derive UPCR, a were chosen to be the same set of parameters that
were shown to work for the SuperMAG initiative (see Table 1). These are a subset of the list used by Waters
et al. (2015) (and is identical to the list actually used by the SuperMAG collaboration http://supermag.jhuapl.
edu) and are only a function of time:

Pk ¼ Pk UTð Þ (4)

where Pk are selected from the list of SuperMAG derived indices (Gjerloev et al., 2010; Newell & Gjerloev, 2011,
2012) and SZA. The SuperMAG indices are derived from all available ground-based magnetometers, and
some of them can be seen as extensions of well-known magnetic indices (e.g., SML is the SuperMAG version
of AL). Note that no solar wind parameters are involved and the reasons for this are discussed in section 4.2.

The β coefficients are determined using PCR where the LOS measurements are regressed onto a set of eigen-
vectors derived from the covariance matrix. Finally, it should be noted that the β-coefficients needs to be
determined only once.

Figure 4. 1March 2011 used to derive the statistics. Panels from top to bottom: OMNI IMF data, SuperMAG sunlit SML/SMU,
SuperMAG darkness SML/SMU, and SuperMAG SMR-LT.
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3.2. PCR-2: Determine Azimuth Dependent Flows

For a given universal time (UT) the state descriptors, Pa, are used as input
into equation (2), which along with all the predetermined β coefficients
(determined in PCR-1) in principle allow us to calculate the velocity com-
ponents for each of the ID’s. For each spatial bin (MLT, MLat) a fairly large
number of independent UPCR, a solutions are thus obtained. Each of these

can be interpreted as vector components in the bka direction. Below we
explain how this set of flow components is used to derive the model vec-
tor flow.

3.3. PCR-3: Derive PCR Model Vector Flows

With the MLT-MLat-azimuth velocity component solutions, UPCR, a, deter-
mined in sections 3.1 and 3.2, the fill-in vector flows at a given MLT and
MLat and UT may be derived.

A velocity component, UPCR, a, and the flow vector, VPCR, is related by

UPCR;a ¼ VPCR·bka (5)

where bka is the unit vector in the beam direction (azimuth). The fill-in or
PCR vector flow was obtained from a cosine function fit to all UPCR, a solu-
tions. The flow magnitude is found from the amplitude of the cosine fit,
and the phase provides the direction of the flow. SuperDARN does not
cover all azimuths at all MLT-MLat bins but does typically cover a fairly
large range of azimuths. Furthermore, the technique yields a large number
of individual UPCR, a solutions. This provides much needed robustness to

the fit and thus the flow vector, VPCR . We organize the UPCR, a solutions
in 36 azimuth bins of each 10° width and determine the median flow at
that azimuth. In reality SuperDARN may not provide sufficient azimuth

coverage and/or solutions to ensure a meaningful flow vector, VPCR, for a
given MLT, MLat, and UT. We thus require the UPCR, a solutions to cover
an azimuth range of less than 45° and include more than 10 solutions.

4. Discussion

When proposing a new approach to deriving a SuperDARN convection
model, the basic question is as follows: To what extent is the new better
than the past models? Addressing this hinges on the presence of definitive
or ground-truth convection distributions. Comparing with space borne

(e.g., Defense Meteorological Satellite Program velocity meter) or ground-based instruments (e.g.,
Incoherent Scatter Radars) is not trivial. Among many other complications there are significant differences
in the spatial and temporal resolutions of SuperDARN and these measurements. For now, in order to avoid
complications in arguing for the validity of another data set, validation of the proposed method is solely
based on the SuperDARN LOS measurements. An independent comparison with other convection electric
field measurements will be performed in a follow-up paper.

4.1. Model Performance
4.1.1. Quantifying Differences Between Our Model and the Standard SuperDARN Model
Results from the new approach described in this paper, the measured LOS flows and the convection model
provided by the SuperDARN Web service (http://superdarn.org/tiki-index.php) were compared. The existing
data available from the SuperDARN Web service are based on the technique discussed by Ruohoniemi and
Greenwald (1996) and Ruohoniemi and Baker (1998), hereafter referred to as RG&RB.

When comparing the solutions made available at the above mentioned website, it is important to point out
that they are based on the same set of measured LOS flows since we have made no changes to steps 1 and 2
described in section 2.

Figure 5. Speed. (top) Probability density function for final solution on the
dayside (06 to 18 magnetic local time) for the R&G model (red) and this
model (blue). (bottom) Same as top but for nightside.
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Figure 4 shows the OMNI IMF conditions and a list of magnetic indices for
one full day. The second and third panels show the SuperMAG SML and
SMU (SuperMAG equivalent of AL and AU; Newell & Gjerloev, 2011) for
the sunlit and darkness ionosphere, respectively (Gjerloev et al., 2010).
The fourth panel shows the SuperMAG partial ring current indices
(Newell & Gjerloev, 2012). The IMF was variable with long periods of south-
ward Bz and the magnetosphere responded by developing a considerable
ring current reaching some �120 nT. The auroral electrojets show a string
of intensifications, some reaching�1,000 nT. Note the difference between
the sunlit electrojet activity and the darkness electrojet activity, which is
information used to derive the PCR model (see section 3).

A day provides a total of 720 gridded distributions of the vector flow (or
the electric potential), which along with the measured LOS flows provides
the statistical basis for comparing the methods. We calculated the statis-
tics for 10 additional moderately disturbed days covering different seasons
and found them to be in agreement with this representative day.

Figure 5 shows probability density functions (PDFs) of the flow magnitude
for the solutions for the dayside (top) and nightside (bottom). The most
striking difference between the two techniques is the shape. While the
new PCR-based model shows a single maximum and a shape similar to a
Maxwell-Boltzmann distribution, the RG&RB solutions show a double-peak
distribution. Because of this difference in shape, it is difficult to compare the
median values. However, in general, themagnitudes do not appear to differ
by much. The PCR-basedmodel nightside solutions appear to have slightly
smaller flows than the dayside, while the RG&RBmodel shows the opposite.

The above differences may be due to differences in the fill-in solutions
obtained from the two techniques. Figure 6 shows the difference between
the measured LOS flows and the fill-in vector flows projected onto the
beam azimuth (equation (5)). Recall that both data fill-in models do not
use actual SuperDARN measurements and are derived from either IMF
(RG&RB) or magnetic indices/SZA (PCR-based). As Figure 6 shows the
PCR-based solution produces flows that have significantly better agree-
ment with the measurements compared with the RG&RB model. This is
the case on both the dayside and nightside, which provides a very strong
argument for the validity of our technique.

While the PCR-based model agreement with the measurements is an
important parameter, the fundamental question is how well the final solu-

tions agree with the measured LOS flows. As seen in Figure 7 the new PCR-based model is slightly better on
the dayside and significantly better on the nightside.

One problem with the comparison made in Figure 7 is that it is based on a circular argument where the mea-
sured LOS flows are used to derive the final model and then the final model is compared with those same
measured LOS flows. In order to avoid this all measurements in a 2 hr wide MLT wedge centered at midnight
and at noon were deleted. Any measurement within this wedge was not used in the derivation of the final
solutions. The final solutions using the modified data set were compared with the measurements within each
of those wedges. Figure 8 shows the error, and we find that the two models perform in a similar way within
the dayside wedge. However, for the nightside wedge the new PCR-basedmodel is significantly better. Given
the results from Figure 6, we argue that the wider the gap in SuperDARN measurements, the better the PCR-
based model will perform, relative to the existing RG&RB model.

Finally, we plot the PDF of the temporal variations for the final solutions. This provides a measure of the per-
formance of accurately representing the temporal development of ionospheric convection. The underlying
assumptions for the two techniques are fundamentally different (see section 4.2 for a discussion), and we
thus expected differences in the temporal variation of the final spatial maps obtained from the two

Figure 6. Absolute error between the fill-in model and the measured line-of-
sight velocity components. (top) Probability density function for absolute
error on the dayside (06 to 18 magnetic local time) for the R&G model
(orange) and this model (light blue). (bottom) Same as top but for nightside.
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models. As was the case for the magnitude of the velocity components
seen in Figure 6 we find that the variability of the flows in the two models
differ (Figure 9). The RG&RB model shows an extended tail indicating a
highly dynamic solution, while our distribution again shows similarities
to a Maxwell–Boltzmann distribution.
4.1.2. Model Performance.
Figure 10 shows an example that illustrates the difference in the convec-
tion distribution resulting from the two different techniques. This example
is chosen to illustrate the impact of the fill-in model and the IMF depen-
dence in the RG&RB model and thus occur during a change in the IMF
orientation. The purpose of the figure is simply to illustrate the response
of the two models to a change in IMF. In the RG&RB solution the convec-
tion changes rather abruptly. Both direction and magnitude change, and
the polar cap potential drops by about 50% in just 2 min. In our model
we do not see any noticeable change despite the fact that we use the
same set of measured LOS flows. This difference in temporal behavior is
reflected in the PDFs shown in Figure 9 where our model is far less
dynamic. In section 4.2.3 we further discuss the fundamental difference
in temporal behavior between the two techniques.

Near noon at 62° MLat we see a few flow vectors in our model that appear
to be driven purely by the fill-in model. This is likely artifacts. The problem
is seen in equations (2) and (3) that in cases of poor statistics may not lead
to robust β solutions. The poor statistics is an issue at low latitudes where
the flows are weak and thus often flagged as ground scatter, little back
scatter and, finally, only a few radars provide coverage. This problem can
be solved with an improved ground scatter identification technique, addi-
tional future observations, and/or some spatial filtering.

This example illustrates the difficulties of deriving the global convection. In
this case it is not possible to objectively determine to what extent each
model is in agreement with the actual convection electric field since we
have no ground truth for comparison. The examples are not a replacement
for statistical results shown in Figures 5–9.

4.2. Modeling Approach

Previous and current SuperDARN fill-in data models have been based on
SuperDARN measurement categorized by some sort of IMF binning. In
contrast, our PCR-based model uses what we refer to as state descriptors.
Waters et al. (2015) briefly discussed the inherent assumptions associated

with an IMF driven model approach. The application to the SuperDARN data and assumptions associated
with our approach are discussed below.
4.2.1. IMF Driven Fill-in Model
An IMF-driven model is essentially a cause-and-effect model in which the IMF is the cause and the iono-
spheric convection is the effect. Such an approach is based on a series of fundamental assumptions:

1. The delay between the driver (front side of magnetosphere) and the effect (ionospheric flows) is known.
2. The M-I system has no inertia.
3. The history of the solar wind-M-I system is irrelevant.
4. Internal M-I processes are irrelevant.
5. The measured solar wind conditions actually interact with the magnetospheric field, and the propagation

delay between measurement and magnetopause is known.

Consider a scenario where measurements of the driver (here IMF) show constant conditions except for a sin-
gle spike. Without accounting for delays (A) and the inertia of the M-I system (B), the convection distribution
will instantaneously change to the new state and then back to the previous state. A cause-and-effect model

Figure 7. Absolute error between the final solution and the measured line-
of-sight velocity components. (top) Probability density function for abso-
lute error on the dayside (06 to 18 magnetic local time) for the R&G model
(red) and this model (blue). (bottom) Same as top but for nightside.
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does not include any information regarding the state of the system and
the internal M-I processes such as substorms (C and D). One might argue
that this is implicitly included as certain driver conditions are more likely
to be associated with such an internal M-I processes. However, this implies
a third delay between the driver and the M-I response (e.g., substorm
growth phase duration). Solar wind measurements directly upstream of
the magnetopause are rarely available, and thus, we typically must assume
that the measurements obtained at, for example, the L1 point are propa-
gated correctly and are representative of what actually interacts with the
magnetospheric field (E).
4.2.2. Using State Descriptors to Derive a Fill-in Model
By basing the model on a set of state descriptors, the assumptions of the
cause and effect approach are avoided. This approach eliminates all five
assumptions (A through E) listed above but introduces one new assump-
tion: (A) The list of state descriptors is appropriate to describe the
convection distribution.

It is not obvious that the ionospheric convection can be parameterized by
a list of magnetic indices (and the SZA). However, the validation performed
in section 4.1 provides support for this approach. In particular, Figure 7
shows that the PCR-based fill-in model is in significantly better agreement
with the measured flows. On the dayside, it was expected that the IMF-
driven model would be suitable since the electrodynamics are known to
be largely directly controlled by the solar wind conditions.
4.2.3. Implications of the Different Techniques
In Figure 9 we showed the difference in the dynamic behavior of the two
techniques. With the above assumptions in mind we can now interpret the
implications of these differences.

In the RG&RBmodel the fill-in model is solely driven by the IMF orientation.
Thus, if the IMF orientation changes from 1min to the next so will the fill-in
convection distribution. This implies an instantaneous response of the
convection distribution without any delays. This is in fundamental conflict
with any cause-and-effect since this inherently must include a delay. In the
M-I system at least three delays are present following a change in the solar
wind driver: (1) the initial response of the ionospheric convection, (2) a
slower reconfiguration as the M-I system adjusts to the new driver condi-
tions, and (3) loading-unloading sequence (e.g., substorms). While the first
is on the order of a few minutes (e.g., Lu et al., 2002), the second may be
15–25 min (e.g., Ridley et al., 1999) and the growth phase of substorms is
even longer. The RG&RB technique does not account for any delays.

In our technique we do not have any implicit information of the driver and thus neither do we have any infor-
mation regarding delays between the driver and the effect. This may be inherently included as the magnetic
indices are due to currents flowing in the M-I system that ultimately are driven by energy flowing from the
solar wind into the M-I system.

With this in mind we expected that the IMF-driven fill-in model would outperform our model on the dayside
but, surprisingly, Figure 7 shows that our model is in significantly better agreement with measurements than
the RG&RB model. We speculate that this is due to the use of SuperMAG local time indices (sunlit and dark-
ness auroral electrojet indices [SML/SMU] and local time ring current indices [SMR]), which apparently allows
the model to reproduce the differences between nightside and dayside behavior.

In Figure 9 we find that our model is far less dynamic than the RG&RB model. We argue that this is due to the
different assumptions on which these models are based. As the IMF conditions change the RG&RB model
switches abruptly between discrete solutions, which effectively assumes that the M-I system has no inertia.
Our model has inertia inherently included as the solutions are driven by the state descriptors.

Figure 8. Absolute error between the final solution and the measured line-
of-sight velocity components but only in the biteouts on the dayside and
nightside. (top) Probability density function for absolute error in the dayside
biteout for the R&G model (red) and this model (blue). (bottom) Same as top
but for nightside biteout.
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In conclusion, we emphasized that the question is neither whether IMF
plays a role in controlling the ionospheric convection nor is it whether
our state descriptors provide a complete description of the ionospheric
convection. Rather, the question is to what extent these two fundamen-
tally different techniques provide a means to derive the ionospheric con-
vection. It is possible that a future iteration of our technique will include
IMF with some appropriate delay included.

4.3. Mathematical Approach

In addition to the abovementioned philosophical differences between our
technique and the standard technique there are a number of technical dif-
ferences. For example, section 2.3 described how we derive the measured

vector flow, VSD, which differs from the standard approach.
4.3.1. Coordinate System
While magnetic coordinates are used to bin the LOS measurements, all
analyses in the new PCR-model approach are completed in geographic
coordinates. The advantage is that geographic (GEO) is an orthogonal
coordinate system. The present SuperDARN processing transfers the data
into AACGM after the location of the backscatter has been determined.
There are consequences for transferring the data into the nonorthogonal
AACGM coordinates.

The first involves the location of the data in this system and how spatial
derivatives are computed. The correct mathematical approach in any non-
orthogonal coordinate system is to use contravariant and covariant deriva-
tives with the relevant Jacobian and metrics (e.g., Lysak, 2004; Proehl et al.,
2002; Rankin et al., 2006; Waters & Sciffer, 2008). For AACGM coordinates,
these metrics would need to be computed numerically as they change
with location.

The second consequence involves treatment of vectors in a nonorthogo-
nal coordinate system. Any vector is usually described by two orthogonal
components in an orthogonal, two-dimensional system such as GEO (e.g.,
north, east). For a nonorthogonal AACGM 2-D surface (at constant radial
distance), four vector component directions are available. These are the
vectors parallel to the coordinate directions (e.g., magnetic north and
east), which are nonorthogonal, and the two vectors that are perpendicu-
lar to these. The vectors used in the standard SuperDARN data processing
transform the GEO Doppler velocity vectors into one component that is

parallel with AACGM north-south (i.e., latitude), and the other is forced to be orthogonal to that, which is
not parallel to the AACGM longitude. In fact, the variation between this vector component and the
AACGM longitude varies with position. This complicates the interpretation of the actual ionospheric convec-
tion in real space. The new approach to SuperDARN data processing described in this paper avoids all these
complications by using GEO vector data.

4.3.2. The Use of Spherical Cap Harmonics
In order to derive the final solution, a vector spherical cap harmonic solution is computed based on the mea-

sured vector flow, VSD, and the fill-in vector flow, VPCR.

It is important to note that our technique does not require the use of any spherical cap harmonics or other
fitted solution in order to provide the ionospheric convection. However, for computing additional quantities
such as the potential (voltage), a potential basis function expansion, as used in the present processing, can be
applied. There is one significant difference between the present approach and the new PCR-based model.
The standard SuperDARN technique utilizes the so-called Heppner-Maynard boundary. This allows the velo-
cities to be set to zero below some low-latitude boundary. This is required in order to satisfy a boundary con-
dition of the basis function expansion applied to the data. The procedure is described in detail by Shepherd

Figure 9. Change in speed of final solution. (top) Probability density function
for absolute error on the dayside (06 to 18 magnetic local time) for the R&G
model (red) and this model (blue). (bottom) Same as top but for nightside.

10.1002/2017JA024543Journal of Geophysical Research: Space Physics

GJERLOEV ET AL. 11



and Ruohoniemi (2000). This basic approach was first introduced by Ruohoniemi and Baker (1998), who used
a circle at constant latitude. While equations 2 and 3 of that paper describe the use of spherical harmonic
basis functions, equation 6 of the same paper specifies how these are distorted into functions that no
longer have the properties of spherical harmonics. This is not a problem if the fitted data are derived from
an expansion of the same distorted functions. However, this approach does require the unnecessary low-
latitude zero velocity boundary condition. When the vector spherical cap harmonic basis functions are
used, both Dirichlet and Neumann boundary conditions are available, allowing for nonzero values at the
low-latitude boundary of the data. This is particularly important for including the data available from the
increasing number of midlatitude radars in the network.

4.4. Spatiotemporal Resolution

The input data use the standard SuperDARN technique, which includes a so-called median filtering in step 2.
This consists of deriving the median LOS flows in a grid that is 3 range-gates by 3 beams by 3 time steps. This
implies that the temporal resolution of the resulting convection map is 6 min given the historical radar scan
period of 2 min. The spatial resolution is 3 times the range gate resolution and 3 times the beam width. The

Figure 10. An example from October 9 2011 of Super Dual Auroral Radar Network convection patterns (downloaded
from vt.superdarn.org) and our solutions for an abrupt change in the interplanetary magnetic field. Note that the
rapid transition seen in the vt.superdarn.org solutions (flows as well as cross polar cap potential drop) are not reproduced
by our model.
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azimuth resolution is thus ~10° by ~150 km wide in the along beam direction. The median filtering includes
three adjacent beams and thus three azimuths, which strictly speaking does not allow a simple median filter-
ing since these point in three different beam directions. Future refinements of our technique can eliminate
the need for the median filtering and thus minimize the smearing in space and time.

5. Summary and Conclusions

A new approach for determining the global ionospheric convection using SuperDARN measurements has
been described. Our model avoids a number of difficulties and assumptions inherent in the present
approach, and we argue that our model is a significant improvement over the standard SuperDARN approach
(RG&RB) since:

1. We use an orthogonal coordinate system (geographic) instead of a nonorthogonal coordinate system
(AACGM) (see section 4.3.1).

2. We use spherical cap harmonics instead of distorted basis functions (see section 4.3.2).
3. We eliminate the need for the so-called Heppner-Maynard boundary (see section 4.3.2).
4. We limit the set of inherent assumptions on which the fill-in model is based (see section 4.2.1).
5. We use the entire set of SuperDARN measurements (all northern stations and all years) to derive

coefficients.

In addition to this list there are several other technical advantages to our approach (see sections 3 and 4). The
assumed immediate cause and effect IMF dependence on ionospheric convection has been abandoned. By
keeping to GEO coordinates, the interpretation of the velocity data in the new model is much clearer, avoid-
ing complications of the representation of vector flows in the nonorthogonal AACGM coordinate system. We
found that our solutions are far less dynamic than the standard SuperDARN solutions, which are interpreted
as being due to the fact that the standard SuperDARN technique excludes M-I inertia and communication
delays while it is inherently included in our approach. Rather, we argue that the M-I system has inertia that
prevents the global convection from changing abruptly in response to an IMF change.

Appendix A

If only one component of the vector flow is known, we use the notation U. If both components are known, we

use the notation V .
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