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[1] The Super Dual Auroral Radar Network (SuperDARN) is a worldwide chain of HF
radars which monitor plasma dynamics in the ionosphere. Autocorrelation functions are
routinely calculated from the radar returns and applied to estimate Doppler velocity,
spectral width, and backscatter power. This fitting has traditionally been performed by a
routine called FITACF. This routine initiates a fitting by selecting a subset of valid phase
measurements and then empirically adjusting for 277 phase ambiguities. The slope of the

phase variation with lag time then provides Doppler velocity. Doppler spectral width is
found by an independent fitting of the decay of power to an assumed exponential or
Gaussian function. In this paper, we use simulated data to assess the performance of
FITACEF, as well as two other newer fitting techniques, named FITEX2 and LMFIT. The
key new feature of FITEX2 is that phase models are compared in a least-squares fitting
sense with the actual data phases to determine the best fit, eliminating some ambiguities
which are present in FITACF. The key new feature of LMFIT is that the complex
autocorrelation function (ACF) itself is fit, and Doppler velocity, spectral width, and
backscatter power are solved simultaneously. We discuss some of the issues that
negatively impact FITACF and find that of the algorithms tested, LMFIT provides the
best overall performance in fitting the SuperDARN ACFs. The techniques and the data
simulator are applicable to other radar systems that utilize multipulse sequences to make
simultaneous range and velocity determinations under aliasing conditions.
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1. Introduction

[2] The Super Dual Auroral Radar Network (Super-
DARN) is a chain of HF radars which monitor ionospheric
plasma convection in the northern and southern hemispheres
by detecting backscatter from ionospheric plasma irregulari-
ties [Greenwald et al., 1985; Chisham et al., 2007]. A typical
SuperDARN radar has 16 look directions (“beams”) sepa-
rated by 3.24° in azimuth, with 75-100 range gates along
each beam separated by 45 km. The dwell time on any par-
ticular beam is typically 3—7 s (integration period) which
results in a 1-2 min azimuthal scan. Examples of field of
view plots of a single scan are shown in Figure 1. Figure la
shows signal-to-noise ratio (SNR) (“backscattered power”),
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Figure 1b shows Doppler velocity, and Figure lc shows
Doppler spectral width. These data are fairly representative
in displaying a range of echo types including (1) an extended
region of low-velocity ground scatter at greater ranges on
the more westward beams, (2) meteor wind scatter at the
very near ranges, (3) a high-velocity ionospheric scatter fea-
ture on the middle beams, and (4) spotty noise/interference
elsewhere but especially on the more northward beams.

[3] The nature of the primary targets detected by
SuperDARN radars introduces certain complications. The
principal dilemma arises because the radar was designed to
detect targets with Doppler velocities of up to 2 km/s out
to a range of 4500 km. These conditions impose mutually
exclusive requirements on the nominal pulse repetition fre-
quency (PRF). To avoid ambiguities in range, we require a
long interpulse period (PRF < 33.3 Hz), while to avoid
ambiguities in Doppler velocity, we must have a shirt inter-
pulse period (PRF > 320 Hz). Some techniques which have
been used to solve this problem are complementary codes,
alternating codes [Lehtinen, 1986], and aperiodic sequences
[Uppala and Sahr, 1994]. In order to resolve this dilemma,
the radars employ multipulse sequences to simultane-
ously determine the range and Doppler velocity of targets
[Farley, 1972; Greenwald et al., 1985; Hanuise et al., 1993;
Baker et al., 1995; Barthes et al., 1998; Ponomarenko and
Waters, 2006]. This means that instead of transmitting soli-
tary pulses that are separated by a fixed time determined by
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Figure 1. Examples of SuperDARN radar field of view plots. The data were collected with the Fort
Hays West radar on 10 September 2011 over the interval 04:30—-04:31 UT. The radar, located at 38.86°N,
—99.39°W, was scanning across 22 beam directions, with range gates beginning at 180 km. The data
were solved using FITEX2 as described in the text. The panels show (a) backscatter power, (b) Doppler

velocity, and (c) Doppler spectral width.

the PRF, the radars periodically emit sequences of pulses
that are separated unevenly in time by integer multipliers of
an “elementary lag time” 7y =1.5-2.4 ms. By sampling the
returns from a fixed range for each pulse of the sequence
using a coherent receiver, all products of the complex auto-
correlation function (ACF), Ry = W)V (t + kzp), where
V' is the receiver voltage sample and £ is the lag number,
can be calculated from O to nty,, where n is the number
of lags, with occasional misses at certain lags. An ACF is
calculated for each range gate from the returns from each
multipulse sequence. Averaging the returns over multiple
sequence transmissions partially suppresses the contribu-
tions from pulses that encounter other scattering regions at
the same sampling times (cross-range interference, CRI, a
type of clutter) [Baker et al., 1995]. This averaging occurs
within what is called an integration period. An example of
a standard SuperDARN multipulse sequence is shown in
Figure 2. One observes that with this eight pulse sequence,
all but two of the lags can be computed up to a lag of 24.

[4] An integration period is typically 3-7 s in length.
The total number of multipulse sequences transmitted dur-
ing an integration varies between about 15 and 60. The
ACFs calculated from all the sequences are then integrated
in order to minimize interference and increase gain. The inte-
grated ACFs are fit to model functions in order to resolve
Doppler velocity (v), spectral width (w), and backscatter
power (signal-to-noise ratio, SNR) as functions of range.
Figure 3a shows an ACF from the Fort Hays West radar
taken from the period of Figure 1. The ACF consists of a
real part (red curve), Re{R}, and an imaginary part (blue
curve), Im{R}, in quadrature. Note that the real part has a
maximum at lag zero, and the imaginary part has a value
of zero at lag zero. The Doppler shift imposed on the fre-
quency of the returned signal is manifested as a systematic
variation of phase with lag. The phase ¢ at lag t is cal-
culated as ¢(tr) = arctan(/m{R(t)}/Re{R(t)}). Figure 3b
illustrates the variation of phase with lag for the ACF of
Figure 3a. The maximum Doppler frequency shift, famax,
that can be resolved is related to the basic lag time, 7y, by
Samax 1/(27y). Typically, this value is ~ 300 Hz, corre-
sponding to a maximum Doppler velocity of ~ 4000 m/s.
The lag power P at lag t is calculated as P(t) = [|R(7)).

The SNR is found using the fitted signal level at lag zero,
Ry, of the ACF. The spectral width is obtained as a decay
of the amplitude of the ACF with lag, i.e., a decrease in
P(7) with 7. Figure 3¢ shows the lag powers for the ACF
of Figure 3a. A detailed discussion of the physical signif-
icance of spectral width in terms of signal composition is
given by Ponomarenko and Waters [2006]. In order to actu-
ally calculate v, w, and SNR from the radar data, fits must be
performed to the lag phases and powers of the ACFs.

[s] FITACF is the name of the traditional routine used
to process SuperDARN ACFs. While it has performed rea-
sonably well since the inception of SuperDARN, its perfor-
mance has rarely been tested, mainly because of the absence
of a realistic data simulator accounting for both regular and
random components of the backscatter echoes. Some other
algorithms have been developed over the last few years that
attempt to improve data quality but to compare their perfor-
mance to that of FITACF objectively; again, one needs to
have a controlled set of inputs such as can be provided by a
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Figure 2. An illustration of a standard SuperDARN pulse
sequence, called katscan. The raised bars represent trans-
mit pulses, and the numbers represent lag time from the first
pulse until transmission. The pulse duration is 300 s, and
the basic lag time is typically either 1500 or 2400 us. Sam-
ples are recorded in between transmit pulses and after the
last pulse. (Figure courtesy of K. A. McWilliams)
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Figure 3. (a) A SuperDARN ACF from the Fort Hays West
radar in Kansas. The data were collected on 10 September
2011 at 04:30 UT from beam 7 and range gate 27. The real
part of the ACF is plotted in red, and the imaginary part is
plotted in blue. The ACF values at individual lags are plotted
as discrete points. Any lags that have been identified as bad
are plotted as open shapes. (b) The lag phases in radians for
the ACF in Figure 3a. (c) The lag powers for the ACF in
Figure 3a.

comprehensive data simulator. An appropriate simulator has
recently been developed by Ribeiro et al. [2013] based on the
collective scatter model initially conceived by Ponomarenko
et al. [2008].

[6] In this paper, we examine three different ways of
extracting Doppler velocity, spectral width, and SNR from
SuperDARN ACFs. We first analyze the conventional
FITACF package, in use for almost 30 years. The sec-
ond method is FITEX2, which is an iteration on a routine
called FITEX, which was developed in order to fit a spe-
cific multipulse sequence. Finally, we test so-called LMFIT,
which uses the Levenberg-Marquardt algorithm [Levenberg,
1944; Marquardt, 1963] to fit the complex ACF in a sin-
gle procedure. The aim of this analysis is to compare the
performances of the three routines and determine which is
the most reliable at extracting Doppler velocity and spectral
width from SuperDARN ACFs.

2. Description of Fitting Methods

2.1.

[7] Some procedures are common to all three ACF fit-
ting routines. This includes subroutines which determine
so-called “bad” lags, which are not suitable for use in the fit-
ting process. A lag is flagged as bad in initial processing if
it is (1) contaminated by CRI, or, (2) affected by transmitter
pulse overlap (a pulse was being transmitted when a sam-
ple should have been recorded). All three fitting methods use
the same such subroutines in initial processing and therefore

Common Routines

have the same lags flagged as bad. A “good” lag is one which
is not bad, and a minimum of four good lags must be present
for fitting to occur. In Figure 3a, lags that have been iden-
tified as bad in initial processing are plotted as open circles
and diamonds. Additionally, all three routines use the same
algorithms to find a noise power level, N, for each integra-
tion period, which is done by calculating the average P(0) of
the 10 lowest power ACFs on a given beam sounding. The
three routines will not have the same exact noise figure, how-
ever, because FITACF does some calculations with integers,
whereas FITEX2 and LMFIT use double precision numbers
for all calculations.

2.2. FITACF

[8] FITACF is the traditional method used for fitting
SuperDARN ACFs. The version used in this paper is dis-
tributed with the SuperDARN Radar Software Toolkit 3 !.
In addition to the three common routines discussed previ-
ously, another bad lag routine is also invoked by FITACF
at the stage of fitting the ACF. This routine identifies addi-
tional lags as bad depending on some empirical criteria
for a single Doppler component (e.g., monotonous power
decay with increasing lags) [Ponomarenko and Waters,
2006]. This routine is not used in the other two fitting rou-
tines because of recommendations made by P. Ponomarenko
and C. Waters at the 2006 SuperDARN meeting held at
Chincoteague, Virginia. However, in FITEX2 and LMFIT,
any lags with power values less than the statistical fluctua-
tion level (op = P(0)/\/Nayg, Where N, is the number of
integrated pulse sequences) are assigned a very low weight,
so as to be effectively excluded from the fitting, in accor-
dance with the same recommendations. Lags flagged as bad
by this checking are indicated by open triangles in plots of
the type shown in Figure 3.

[o] To resolve all three major information parameters, v,
w, and SNR, FITACF applies two separate fitting proce-
dures. The Doppler velocity is determined from the variation
of phase with lag, i.e.,

A d¢

YT o &
where A is the radar wavelength. A linear least-squares fit
is performed to determine 8¢/§7. In determining the phase
slope, it is important to account for the 27 uncertainty in
the phase shift variation with . With FITACF, an initial
estimate of the number of 27 phase cycles across the full
extent of lag time is made using the phases of the first four
lags. Subsequent lags are fit by advancing one lag at a time
and considering whether to unfold a 27 phase variation and
then fitting the phase slope over the augmented set of lags.
The fact that FITACF must make an initial guess will be an
important issue later in this discussion.

[10] A completed FITACF phase-fit for the data shown
in Figure 3 is shown in Figure 4a. The phases correspond-
ing to the data are plotted in purple, while the fitted solution
is plotted as a green dash-dotted line. The solid circles and
open diamonds represent the “good” and “bad” lags, respec-
tively. The Doppler velocity is calculated from the slope of
the best-fit line. Note that even though the data and fit are
shown as a sawtooth pattern, the fitting is actually performed

'http://superdarn.jhuapl.edu/software/index.html
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Figure 4. FITACEF results for the data in Figure 3. (a) The
phase fit used to resolve Doppler velocity. The actual lag
phases are plotted in purple, and the fit is plotted in green.
(b) Log power fit used to resolve power (SNR) and spectral
width. The actual lag powers are plotted in red, and the fit is
plotted in green.

as a straight line that extends over multiple 27 ranges. In
this case, the line-of-sight Doppler velocity calculated from
the slope of the best-fit line is v =—916 m/s, where the minus
signifies motion away from the radar.

[11] In order to resolve Doppler spectral width and power,
a model is fitted to |R(7)|. For the entirety of this paper, we
will assume that the ACF amplitude decays exponentially,
ie., |R(t)] = Rpe ™ where t; is a decay time constant
[Ponomarenko et al., 2007]. For the actual calculation of
parameters, a second linear least-squares fit is performed to
the natural logarithm of the |R(7)| of the ACF.

[12] The resulting y-intercept of the fitted model repre-
sents the fitted lag zero power, R, which is then used to
calculate SNR in dB,

SNR = 10 log,(Ro/N). @)

[13] The slope of the linear log-power fit is used to calcu-
late the exponential decay time of the signal, which in turn
is used to find the spectral width of the ACF, which is deter-
mined as the width of a model spectrum at a half-power level
and for the exponential model can be expressed as

A
=—. 3
v 2ty ( )
[14] A completed log-power fit is shown in Figure 4b. The
lag powers are presented as red symbols, while the best fit
line is plotted in green. For this particular ACF, the FITACF
analysis gives w = 72 m/s and an SNR= 20 dB.

2.3. FITEX2

[15] FITEX2 represents an iteration on an earlier routine
called FITEX. FITEX was originally developed as a new
method to fit velocity data from a particular pulse sequence,

known as tauscan, which is described in Greenwald et al.
[2008]. Similar to FITACF, a weighted linear least-squares
fit to the log of the ACF lag powers is used to resolve SNR
and spectral width. However, the phase fitting differs signif-
icantly. Instead of the linear phase fit, 120 phase variation
models spanning the 180° range at 1.5° intervals are cal-
culated and compared to the phases of the actual data. The
number of models used is a trade-off between the computa-
tional burden of doing the comparison, which increases with
the number of models, and the resolution of the velocity
determination. These predetermined models are then fitted
to the actual sawtooth pattern (e.g., Figure 3a) without the
need for an initial guess on the number of 27 cycles across
the ACF lag range. Once this comparison is complete, the
model that produces the lowest root-mean-squared (RMS)
error is chosen to be the best fit. If this best fit produces an
RMS error more than three standard deviations below the
mean error across all models, then it is determined that the
fit is valid (“good”), and v is calculated from the model.
The major disadvantage of FITEX is that it only provides
~ 25 m/s velocity resolution because of the discrete steps
in the phase slopes of the 120 models. The result of the
model comparison with the data in Figure 3 is shown in
Figure 5.

[16] The subsequent version, FITEX2, was developed to
solve Doppler velocity to arbitrary resolution. For improve-
ment of Doppler velocity resolution, the best model phase
fit from FITEX is used as an initial guess for the bisec-
tion method algorithm described in Press et al. [1992]. This
provides arbitrary velocity resolution, while only increas-
ing processing time by the equivalent of 5-10 model
comparisons. For the data in Figure 3, FITEX2 returns
v = 916 m/s, W =73 m/s, and SNR = 20 dB, which are
essentially the same as determined by FITACF. The FITEX
criteria for a good fit are also used in FITEX2.

2.4. LMFIT

[17] In contrast to FITACF and FITEX2, which apply two
separate fitting procedures for the ACF phase and power,
this routine performs a single model fit to a complex ACF
consisting of real and imaginary parts, so that v, w, and
SNR are resolved simultaneously. Specifically, Ry, Doppler
frequency, and decay time constant are adjusted to fit a

Model vel = =914 m/s

@ Error
Min
— - Threshold

error

=100 0
phoses [deg]

100

Figure 5. FITEX2 model comparison results for the ACF
in Figure 3. The orange circle represents the lowest error
model. The horizontal dashed line represents the error
threshold for a good model fit (three standard deviations
below the mean model error). The model velocity which
produces the lowest error is —914 m/s.
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Figure 6. LMFIT results for the ACF in Figure 3. The
red and blue circles represent the actual ACF, whereas the
orange and blue lines represent the fitted ACF calculated
from the outputs of the LMFIT algorithm.

model to the empirical data. Previously, Ponomarenko et al.
[2008] used this method to fit ACFs in the special case of
“mixed scatter,” which occurs when a single range gate con-
tains backscatter from two distinct targets, which are usually
ionospheric plasma irregularities and the terrestrial surface
(ground scatter). It should be noted that in this paper, we
are only testing the ability of LMFIT to fit single-component
scatter. The name LMFIT is given to this approach because
it utilizes the Levenberg-Marquardt nonlinear fitting method
[Levenberg, 1944; Marquardt, 1963; Press et al., 1992].

[18] In order to apply LMFIT, the ACF must be expressed
as a single function. We choose to use a modified version of

an exponentially decaying harmonic function described by
Ponomarenko et al. [2008], i.e.,

R(v) = Rye Pde /2T 4
where j = +/—1, and f; = # g—‘f is the Doppler frequency. In
this equation, the first exponential describes the decay of the
signal amplitude, while the second (complex) exponential
describes the phase variation of the signal. Doppler velocity,
spectral width, and SNR (in dB) can then be calculated using
equations (5), (3), and (2), respectively.

va = Ml2. )

[19] For implementation of the Levenberg-Marquardt
algorithm, the free C library MPFIT is used [Markwardt,
2009]. This requires that initial guesses be provided on the
three parameters before the fitting starts. For this purpose,
we used the Doppler velocity and spectral width results from
FITEX in order to provide initial guesses of f; and #,. The
decay time parameter is limited to between 0.001 and 1000 s,
which correspond to spectral widths of about 4000 and
0.004 m/s, respectively. Values measured by SuperDARN
radars typically range from zero to hundreds of meters per
second. The initial guess for Ry is set to the value of the real
part of the ACF at lag zero. A good fit status is returned from
LMFIT if (1) the model comparison yields a result with an
error that is three standard deviations below the mean model
error (as in FITEX2), (2) MPFIT returns a nonerror status,
and (3) Ry is greater than 150% of the ACF error on the fit.
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Figure 7. RMS velocity estimate errors for the three fitting routines for three different decay times, 0.01,
0.03, and 0.10 s, which correspond to spectral widths of 398, 133, and 39 m/s, respectively. The x-axis
shows simulated velocity. The y-axis represents RMS errors. The red, purple, and green lines represent

FITACEF, FITEX2, and LMFIT, respectively.
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Figure 8. True velocity estimate errors for the three fitting routines for three different decay times orga-
nized by simulated velocity. The true error is calculated as fitted velocity minus simulated velocity. The

display format is the same as in Figure 7.

ACEF error is a measure of how far an ideal ACF generated
from the fitted parameters deviates from the ACF being fit-
ted. The result of using LMFIT on the ACF from Figure 3
is shown in Figure 6. LMFIT returns a Doppler velocity of
—917 m/s, a spectral width of 77 m/s, and an SNR of 20 dB.

3. Test Data

[20] For thorough testing of all three fitting routines, we
used artificial ACFs generated by a simulator described in
detail by Ribeiro et al. [2013]. The simulator allows us
to set desired values for v, z; (w), and SNR. Importantly,
the simulator utilizes the collective scatter approach allow-
ing for realistic simulation of the statistical variability of
the backscatter echoes by setting the appropriate number of
averaged pulse sequences.

[21] Inorder to cover a range of v and w, we simulate data
over a two-dimensional grid of values with fixed decay time
and Doppler velocity at the nodes. We used the eight-pulse
sequence katscan (Figure 2) with basic lag of trp = 1.5 ms,
radar frequency fy = 12 MHz and N,, = 35. The sim-
ulated data contains Doppler velocity values from 50 to
1950 m/s in 100 m/s steps, and decay time values from 0.01
to 0.1 s in 0.01 s steps. SNR is fixed at a maximum of
25 dB. The effects of irregularity growth, particle precip-
itation, and velocity spread are set to be negligible in the
simulation parameters. There are 500 samples for each com-
bination of decay time and Doppler velocity, resulting in a
total of 100,000 ACFs. Note that decay time is referred to

here instead of spectral width because it is the more funda-
mental value and does not have a linear relation with spectral
width. Conversely, Doppler velocity is used even though
Doppler frequency is the more fundamental value, because it
does have a linear relationship with frequency. In the remain-
der of this paper, decay time and Doppler velocity will be the
values used to address error. Lag zero power error will not be
examined because although much information is potentially
available from the backscattered power measurement, these
data are little used, and we simplify our presentation here by
not examining the error on the lag zero power estimate.

[22] In order to simulate a realistic range profile of the
backscatter echoes, each integration period contains a band
of 10 range gates containing scatter separated by 45 km. The
SNR decreases with range R as 1/R?* to account plausibly for
the geometrical decay of the radar transmission. This coef-
ficient of 1/R? is appropriate for ionospheric beam filling,
as opposed to hard target backscatter which would decay as
1/R*. Here, R = (n+ 1) x 45 km, where n = 0-9 is the
range gate number.

4. Results

[23] For the comparison, all 100,000 simulated ACFs are
fed into the three fitting routines, and the results are stored.
Three specific types of error are examined specifically for
this exercise, and these will be explained later on in the
paper. For all three types, error will be calculated in terms of
the deviations from the inputs to the simulator. Regardless of
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Figure 9. RMS decay time estimate errors for the three fitting routines for three different simulated
Doppler velocities. The display format is the same as in Figure 7.

type, error values are only retained for the specific routines
which return a good fit.

[24] First, Doppler velocity estimate error is analyzed in a
root-mean-squared (RMS) error fashion to review the typical
error magnitude, i.c.,

oy, = v/ {(v—10)?), (6)

where v is the fitted velocity, vy is the velocity input to the
simulator, and the brackets indicate averaging over all of
the valid fitted values. Second, the presence of a regular
bias/offset is analyzed in terms of mean (signed) deviation,

Ay, ={(v—vp). 7

[25] Finally, normalized RMS errors are examined for fit-
ted decay times. The errors are calculated in a similar fashion
to the velocity errors, except that they are normalized by the
original input (to the simulator) decay time quantity, i.e.,

01 = v {[(ta = tao)*)tao, ®)

where o; is the error on the decay time estimate, #, is the
fitted decay time, and 74 is the decay time input to the sim-
ulator. True decay time errors are not discussed in this paper
because none of the fitting routines exhibit a bias in the
calculation of decay time.

4.1. Velocity Errors

[26] The velocity errors are most important because they
have a direct influence on the main SuperDARN prod-
uct, high-latitude plasma circulation, and electric field

maps which are based on the Doppler velocity estimates
[Ruohoniemi and Baker, 1998]. Because of this, velocity
error should be the primary consideration in determining
which fitting method provides the best performance.
4.1.1. RMS

[27] Figure 7 presents o, (equation (6)) for three values
of input z;,0 = 0.01, 0.03, and 0.10 s which correspond to
W =~ 398, 133, and 39 m/s, respectively. The first feature
that stands out is that FITACF performs extremely poorly for
higher (> 1 km/s) Doppler velocities. Another feature that is
apparent is that FITEX2 and LMFIT have some pronounced
errors with bad fits at ¢,y = 0.01 s, i.e., for very wide spec-
tra. These bad fits occur in the same velocity bins because
FITEX processing is used to obtain an initial velocity for
LMFIT. In general, LMFIT outperforms the other methods
forz;0 < 0.03 (W > 133 m/s), and all three fitting routines
stabilize above this level. Figure 7 also illustrates that with
longer decay time (decreasing spectral width), the error in
velocity estimates generally decreases for all three methods.
4.1.2. Bias

[28] Another aspect of the velocity estimation that must
be examined is whether any of the three fitting routines have
a statistical high or low bias, i.e., a chronic underestimation
or overestimation of velocity. To illustrate this, in Figure 8,
we show mean velocity deviation, A, (equation (7)). Again,
three different simulated decay times are pictured, 0.01,
0.03, and 0.1 s. It is immediately apparent that FITEX2 and
LMFIT have no apparent bias, while FITACF consistently
produces velocities with the wrong sign for |[v| > 1000 m/s.
This bias begins when the simulated velocity is high enough



RIBEIRO ET AL.: SUPERDARN ACF FITTING

to cause problems with the initial guess of the number of 27
phase cycles. This effect will be discussed later in this paper.

4.2. Decay Time (Spectral Width) Errors

[29] Spectral width is the second most scientifically
important parameter that is returned from these fitting rou-
tines, as it is typically used in conjunction with Doppler
velocity to classify backscatter as ionospheric or ground
[Blanchard et al., 2009]. It has also been used as a proxy to
estimate the location of the open-closed magnetic field line
boundary at auroral latitudes [Chisham et al., 2007].

[30] As was mentioned previously, spectral width error is
examined in terms of decay time, because this is the more
fundamental parameter in (4). Also, only the RMS error is
considered, because none of the three routines exhibit a bias
in terms of average true error.

4.2.1. RMS

[31] The results of this comparison can be seen in
Figure 9, which shows o, (equation (8)) for all three fit-
ting routines. We found that, in contrast to o,, the absolute
values of RMS decay time errors are approximately propor-
tional to the input ¢4 value, so we show errors normalized by
the respective simulated decay time, #4. Panels are shown
for vo = 50, 1050, and 1950 m/s. It is apparent that sim-
ulated velocity does not have a strong effect on the quality
of the decay time estimates. In general, LMFIT provides
better decay time estimates than FITACF and is also notice-
ably better than FITEX2 for #; < 0.3 s. None of the three
routines, however, exhibit very poor performance.

4.3. Calculation Efficiency

[32] Another factor which must be considered is which fit-
ting routine is more stable and produces a larger percentage
of valid fits. After all, a routine might be able to estimate all
parameters perfectly, but if it can only fit one out of every
10 ACFs which contain backscatter, then it is essentially
useless. In order to test this, again, all three routines were
run on the file with the 100,000 simulated ACFs. FITACF
produced 99,714 good fits, while FITEX2 and LMFIT both
produced 99,703 good fits. The fact that LMFIT and FITEX2
have the same number of fits is a direct result of LMFIT
using a FITEX style process for obtaining an initial velocity
guess. Regardless of this, all three routines produce a similar
number of good fits.

5. Discussion

[33] The major finding of this work is that FITACF veloc-
ity fitting is inferior to the other two routines at velocities in
excess of 1 km/s. The root of this problem lies in the fact
that an initial guess for 27 phase cycles is made. FITACF
uses lags 1—4 to make an initial guess on the number of 27
phase jumps to be expected across the entire lag time extent
of the ACF. When the velocity magnitude exceeds 1 km/s,
the first 2r “flip” occurs within these four lags so that miss-
ing one or two lags can lead to a wrong initial guess. This
effect is illustrated in Figure 10, which represents phases of
two ACFs simulated with the input velocity v = 1750 m/s. In
the top panel, only lag one is bad so that FITACF performs
an accurate fit and perfectly reproduces the simulated veloc-
ity value. In the bottom panel, both lags one and two are bad
so that the use of the remaining lags three and four produce
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Figure 10. An example of a bad FITACF velocity fit.
Figure 10a shows a good phase fit of a simulated ACF with
a velocity of 1750 m/s. Figure 10b shows a bad phase fit of
a simulated ACF with a velocity of 1750 m/s.

wrong guesses on both the magnitude (generally lower in
magnitude) and the sign of the phase slope. Ultimately, this
leads to a bad velocity estimate of —383 m/s. As we men-
tioned before, FITEX2 and LMFIT do not use the four-lag
guess procedure, so they are not affected by this artifact.

[34] Another noticeable effect is that the magnitude of the
o0, generally decreases with increasing #,. This is true of
all three fitting routines and occurs because the velocity fit-
ting is sensitive to decay time. As lag power decreases, the
statistical fluctuation level op remains constant and makes
up a larger portion of the signal level in the ACF, which
causes increased uncertainty in the phase fit. This calculation
is illustrated in equation (9). Thus, as ¢; decreases, the num-
ber of lags with lower power increases, resulting in higher
uncertainty in the phase fit.

Im{R(v)} + ore

_ —1
PO = e RO Lo

)

[35] The third significant finding is that, except in the
case of FITACF at high velocities, o, is independent of the
velocity itself. The reason for this is that, while the sta-
tistical errors for ACF power depend on power itself, i.e.,
op = RO/\/Nan, ACF phase is an arbitrary parameter, so
its fluctuations cannot depend on the phase magnitude. In
fact, they are also determined by the ACF power (more
specifically, correlation coefficient) at a given lag [Bendat
and Piersol, 1986]. Therefore, theoretically, one would not
expect to observe velocity magnitude effects on statistical
fluctuations of any estimated parameters, including ¢,.

[36] Conversely, o, is fairly constant across all tested val-
ues of #4. The proportionality of nonnormalized decay time
errors, gy, to t, can be illustrated using the propagation of
ACF power errors onto decay time. In estimating #;, we are
looking for a point on the time lag axis which corresponds
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Table 1. Fitting Method Performance Summary

FITACF FITEX2 LMFIT
Number of fits 99,714 99,703 99,703
Median v, error (m/s) 4.855 4.646 4.526
Mean v, error (m/s) 91.42 8.447 7.291
Median ¢, error (norm.) 0.1591 0.1591 0.1453
Mean ¢, error (norm.) 0.2124 0.2056 0.1755

to the e-fold decay of ACF power. The propagation of errors
method gives us a respective decay time uncertainty, o, =

% ‘ We are interested in the decay time error at t = .

With changing #,, the power uncertainty, op, remains essen-
tially constant, but the derivative term (inverted slope of
P(7) at T = t;) increases or decreases proportionally so that
04 o t4. Detailed theoretical analysis of statistical fluctua-
tions lies beyond the scope of this manuscript, but we plan
to address it in a future paper.

[37] Table 1 presents a summary of the performance char-
acteristics of all three fitting routines. Note that some of the
errors presented here have been normalized by the simulated
parameters. For example, a normalized decay time error is
calculated as |£y—¢|/ty. Mean and median errors are shown for
velocity and decay time. In both median and mean compar-
isons, LMFIT has the lowest errors for all fitted parameters.
Although several of the results are very close, the results are
unanimous. The sole weakness of LMFIT is a longer run
time. Future work could focus on developing a new method
of providing LMFIT with an initial velocity guess in order
to sever the tie to FITEX, possibly eliminating the bad fits
seen in the top panel of Figure 7.

op

6. Summary and Conclusions

[38] After examination of the error characteristics and
effectiveness at extracting estimates from ACFs, we con-
clude that LMFIT is the fitting routine which generally
performs best in estimating ionospheric parameters on the
basis of SuperDARN radar measurements. The conventional
routine FITACF performs very well at |v] < 1000 m/s, but at
higher velocities, eventual data contamination at the shortest
lags causes it to produce systematically poor estimates. In
sum, LMFIT significantly outperforms FITACF and slightly
outperforms FITEX2. Finally, we note that the findings and
routines reported here are applicable to other multipulse
radar systems that have been designed to overcome the range
ambiguity/velocity aliasing dilemma.
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Foundation for support under grants AGS-0849031 and AGS-0946900.
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