
Solar filament impact on 21 January 2005:
Geospace consequences
J. U. Kozyra1, M. W. Liemohn1, C. Cattell2, D. De Zeeuw1, C. P. Escoubet3, D. S. Evans4, X. Fang5,
M.-C. Fok6, H. U. Frey7, W. D. Gonzalez8, M. Hairston9, R. Heelis9, G. Lu10, W. B. Manchester IV1,
S. Mende7, L. J. Paxton11, L. Rastaetter12, A. Ridley1, M. Sandanger13, F. Soraas13, T. Sotirelis11,
M. W. Thomsen14, B. T. Tsurutani15, and O. Verkhoglyadova15

1AOSSDepartment, University ofMichigan, Ann Arbor, Michigan, USA, 2School of Physics andAstronomy, University ofMinnesota,
Minneapolis, Minnesota, USA, 3ESA, Noordwijk, Netherlands, 4Boulder, Colorado, USA, 5LASP, University of Colorado Boulder,
Boulder, Colorado, USA, 6NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 7Space Sciences Laboratory, University of
California, Berkeley, California, USA, 8INPE, Sao Jose Dos Campos, Brazil, 9William B. Hanson Center for Space Sciences, University of
Texas at Dallas, Richardson, Texas, USA, 10High Altitude Observatory, Boulder, Colorado, USA, 11Applied Physics Laboratory, Johns
Hopkins University, Laurel, Maryland, USA, 12Community Coordinated Modeling Center, GSFC, Greenbelt, Maryland, USA,
13Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway,
14Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 15Jet Propulsion Laboratory, Pasadena, California, USA

Abstract On 21 January 2005, amoderatemagnetic storm produced a number of anomalous features, some
seen more typically during superstorms. The aim of this study is to establish the differences in the space
environment from what we expect (and normally observe) for a storm of this intensity, which make it behave
in someways like a superstorm. The stormwas driven by one of the fastest interplanetary coronal mass ejections
in solar cycle 23, containing a piece of the dense erupting solar filamentmaterial. Themomentumof themassive
solar filament caused it to push its way through the flux rope as the interplanetary coronal mass ejection
decelerated moving toward 1AU creating the appearance of an eroded flux rope (see companion paper by
Manchester et al. (2014)) and, in this case, limiting the intensity of the resulting geomagnetic storm. On impact,
the solar filament further disrupted the partial ring current shielding in existence at the time, creating a brief
superfountain in the equatorial ionosphere—an unusual occurrence for a moderate storm. Within 1 h after
impact, a cold dense plasma sheet (CDPS) formed out of the filament material. As the interplanetary magnetic
field (IMF) rotated from obliquely to more purely northward, the magnetotail transformed from an open to a
closed configuration and the CDPS evolved from warmer to cooler temperatures. Plasma sheet densities
reached tens per cubic centimeter along the flanks—high enough to inflate themagnetotail in the simulation
under northward IMF conditions despite the cool temperatures. Observational evidence for this stretching
was provided by a corresponding expansion and intensification of both the auroral oval and ring current
precipitation zones linked to magnetotail stretching by field line curvature scattering. Strong Joule heating in
the cusps, a by-product of the CDPS formation process, contributed to an equatorward neutral wind surge
that reached low latitudes within 1–2 h and intensified the equatorial ionization anomaly. Understanding the
geospace consequences of extremes in density and pressure is important because some of the largest and
most damaging space weather events ever observed contained similar intervals of dense solar material.

1. Introduction

On 21 January 2005, one of the fastest interplanetary coronal mass ejections (ICMEs) of solar cycle 23 containing
dense plasma directly behind the sheath region struck the Earth and produced a variety of unusual effects in
the Earth’s magnetosphere and ionosphere, some seen previously only during superstorms. The January 2005
storm was a relatively modest event with minimum Dst~�100 nT, whereas superstorms are the most
extreme of geomagnetic disturbances with Dst≤�240 nT [Tsurutani et al., 1992; Mac-Mahon and Gonzalez,
1997; Bell et al., 1997; Echer et al., 2008]. The major challenge for the present investigation is to establish
the differences in the space environment between this storm and other moderate storms, which make this
storm behave in some ways like a superstorm and in other ways like a moderate event. What do these
departures from what we expect (and normally observe) tell us about the way the geospace system works?
Following the trail required to find the answers to these questions led to the investigation of the linked
effects of extreme dynamic pressure (and density) from the Sun to the Earth.
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As we will show, the dense material following immediately behind the sheath in the ICME was directly or
indirectly responsible for most of the unusual features in the storm. This dense material was a piece of the
erupting solar filament identified on the basis of its enhanced He+/He2+ composition ratio and cool
temperatures [Kozyra et al., 2013] and was in an unexpected position in the ICME following directly behind
the sheath, a position different from its location when it lifted off the Sun. The remarkable processes
responsible for the redistribution of the filament material within the ICME are outlined in Kozyra et al. [2013]
and presented in detail in a companion to the present paper by Manchester et al. [2014].

To briefly summarize, the densematerial of the solar filament produced significant changes in the ICME structure
before arrival at Earth. In the simulation, as the ICME deceleratedmoving toward Earth, themomentum of the
dense filament material, originally at the back (sunward edge) of the flux rope, caused it to push its way
forward toward the nose. A portion of the filament material pushed so far forward that it came into direct
contact with the sheath material leading the ICME. Diverging nonradial flows developed around the filament,
which transported azimuthal flux from the front of the filament to the sides of the ICME. At the same time,
magnetic field lines at the nose of the ICME reconnected with the interplanetary magnetic field (IMF), peeling
away the outer layer and creating a region of opened field lines trailing behind. However, during the short
propagation time, only 7% of the azimuthal magnetic flux was lost by reconnection, so the vast majority
of the flux imbalance in front of the filament was due to divergent flows. This transport process offers an
additional mechanism to explain flux rope erosion, which is particularly applicable to fast CMEs.

Observations at 1AU provide compelling evidence that the processes in the simulation of the fast ICME actually
occurred during the 21 January 2005 event [Manchester et al., 2014]. The reconnection between northward
IMF in the sheath and the southward IMF in the ICME predicted by the simulation was, in fact, observed by
the Cluster satellite on 21 January 2005 in the solar wind upstream of the Earth [Munoz et al., 2010].
Dense filament material was found directly behind the sheath region, and the azimuthal flux was entirely
unbalanced in the flux rope with a much shorter interval of southward IMF at the leading edge than
northward IMF in the remaining portion of the flux rope. Evidence in the strahl electrons indicates a
topological change in the flux rope consistent with a remnant flux rope followed by opened field lines.
This imbalance in the direction of the azimuthal flux was likely responsible for limiting the intensity of the
magnetic storm that developed.

In this paper, we explore the linkages between the eroded flux rope, the dense filament material, and the
unusual features in geospace that developed. Even before its arrival, the solar filament drove changes in
the space environment that would not be expected in association with a moderate magnetic storm. The
interplanetary (IP) shock at the leading edge of the ICME was exceptionally strong. It reached magnetosonic
Mach 5.4 [Du et al., 2008] when even values above Mach 4.0 are rare, and typical values at 1 AU are 1.0–3.0
[cf. Tsurutani and Lin, 1985]. High velocities are required at 1 AU to produce such strong shocks. In this
case, based on the simulation described in Manchester et al. [2014], the high initial velocity of the ICME
was almost certainly sustained by the momentum of the massive solar filament as it moved through
the background heliosphere. Such a scenario is also consistent with the diverging flows ahead of the
filament material.

The strong shock initiated exceptionally intense auroral activity in which AL dropped below �2000 nT,
eventually reaching �3200 nT before recovering (see Figure 3h). In 3.5 years of uncalibrated AE data
from 2002 to the middle of 2005, there were only 11 cases of AL below �2000 nT [Yamauchi et al., 2006].
Nine of these events were preceded by> 15min of southward IMF during which presumably energy
was stored in the magnetotail to later power the intense substorm. In the remaining two, there was no
apparent preconditioning of the magnetotail. The 21 January 2005 activity was one of these two events.
Auroral activity of this intensity is extremely rare with characteristics that differ significantly from typical
substorms [Miyashita et al., 2005; Rosenqvist et al., 2005; Yamauchi et al., 2006]. Du et al. [2011] focused
on a particular auroral feature during this extreme auroral activity (a dawn-dusk aligned polar cap arc at
~85°–90° magnetic latitude (MLAT)), which they propose to be associated with activity at the distant X line
in the magnetotail.

An exceptionally strong spectral peak was reported in the IMF at ultra low frequencies (3–4 mHz) [Potapov
and Polyushkina, 2010]. The direct entry of these ULF waves into the magnetosphere was inferred from the
simultaneous presence of 1–5 mHz discrete spectral peaks in the geosynchronous magnetic field. ULF waves
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are known to interact with radiation belt electrons enhancing radial diffusion and thus contributing to
adiabatic acceleration as well as to losses at the dayside magnetopause [Schulz and Lanzerotti, 1974; Hudson
et al., 2000; Elkington et al., 2003].

In the hour following the strong IP shock, detached auroraswere observed in the dayside, duskside, and nightside
subauroral regions attributed to high-energy ion precipitation [Zhang et al., 2008]. The IMF was northward
at the time of shock arrival but rapidly rotated southward initiating a relativistic electron flux dropout event.
Within less than an hour, >2MeV electron fluxes at GOES 10 and GOES 12 had decreased by 3 orders of
magnitude [Clilverd et al., 2006, 2007]. An integrated view of precipitation observed by ground-based instruments
and on balloons presented by these authors suggests that approximately 10% of the drop in the geosynchronous
flux in the first 10 min resulted from precipitation into the atmosphere. Over the course of the next 2.7 h,
an estimated half of the> 2MeV outer belt electrons were lost to the atmosphere. This event was one of the
first to offer compelling evidence that a significant fraction of radiation belt particles are actually lost to the
atmosphere during a flux dropout event. Bursts of high-energy precipitation associated with both the IP shock
impact and the filament arrival created enhancements in electrical conductivity and associated weakening
of the electric fields in the stratosphere observed by MINIS balloons [Kokorowski et al., 2008] demonstrating
direct linkages between the solar filament and regions as low in altitude as the middle atmosphere.

Intervals of extreme downward Poynting flux in the cusp region were reported in observations by the DMSP
satellites during this event, physically linked to high-latitude reconnection under conditions of strong IMF By
in Li et al. [2011] and Knipp et al. [2011]. These fluxes (and simulated Joule heating rates at the same locations)
reached more than 100mW/m2 at the time of the extreme auroral activity mentioned previously and again
during the interaction with the dense filament under northward IMF conditions. These are comparable to
rates found in superstorms, where for reference, typical values during moderate magnetic storms reach only
50mW/m2 [Gary et al., 1995]. However, as we will show in section 5.2.1, the maximum Joule heating rates
in the simulation occurred during the short interval of southward IMF and strong IMF By at the leading edge
of the solar filament, reaching values as high as 174mW/m2. No DMSP satellites were traversing the cusp
regions at this time [Li et al., 2011] and so they missed observing the peak values predicted by the simulation.
The strong IMF By, high solar wind speed, and large dynamic pressures of the solar filament combined to
amplify Joule heating rates to these extreme levels. We will show that the ~2 h spike in Joule heating
associated with the shock, sheath, and leading edge of the solar filament triggered a massive equatorward
neutral wind surge with effects on equatorial electrodynamics discussed in section 6.2.2.

The expansion of the neutral upper atmosphere was also exceptional compared to other magnetic storms.
The 21 January 2005 storm contained several examples of a recently identified class of unpredicted
satellite drag events associated with regions near the dayside cusp [Lühr et al., 2004; Rentz and Lühr, 2008].
However, even among events of this nature, the 21 January 2005 magnetic storm was unusual. The neutral
thermosphere at middle-to-low latitudes expanded more relative to the strength of the merging electric field
(storm energy input) than during any other storm in 2001–2005, an interval which included a number of
superstorms [Liu et al., 2011]. Questions have been raised about the relative roles of Joule heating and
low-energy electron precipitation in producing the unexpected level of thermospheric expansion in these
types of events [Lühr et al., 2004; Schlegel et al., 2005; Liu et al., 2005a; Clemmons et al., 2008; Sadler et al., 2012].
In the present study, we find an extended region of soft electron precipitation just equatorward of the cusp
and spanning from dawn to dusk during the northward IMF interval of the solar filament discussed in
section 5.2.2. The origins of this region are not investigated here but its presence may explain the unusual
efficiency of the atmospheric expansion relative to the strength of the merging electric field in this event.

Finally, the interaction with the shock and driving solar filament had a significant effect on the equatorial
ionosphere. Prompt penetration electric fields (PPEF) began to lift the equatorial F2 layer immediately at the
first shock impact, and an F3 layer developed rising to more than 1200 km altitude [Zong et al., 2010; Sahai
et al., 2011; Santos et al., 2012] (an indicator of an enhanced equatorial fountain [Paznukhov et al., 2007]). Later
in the storm, an unusual intensification of the equatorial ionization anomaly (EIA) was reported by Santos
et al. [2012] in observations from the Latin American sector and by Sahai et al. [2011] in observations from the
South American sector and global total electron content (TEC). We will show that despite equal or higher
levels of magnetic activity, similar development of the EIA crests was not observed in the few days prior to
21 January but only developed in concert with the solar filament. We explore the underlying mechanisms.
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The ring current continued to grow during the northward IMF interval following the arrival of the solar
filament [Du et al., 2008]. Ring current growth has so far not been associated with northward IMF conditions.
Lack of space does not permit a discussion of our investigation into the mechanisms responsible here, but
this issue is treated along with a larger set of unusual signatures associated with the development of the ring
current, plasma convection, ionospheric outflows, cusp ion recirculation, the delayed build up of the ring
current oxygen component, and a strong low-latitude ion-atom aurora in a separate paper.

In this paper, we focus on a set of phenomena linked directly to the high pressures (and densities) in the solar
filament, including an equatorial superfountain, a cold dense plasma sheet (CDPS) in the magnetosphere
formed from the dense filament material, strong magnetotail stretching due to the diamagnetism of the
CDPS, a persistent expansion of the discrete auroral regions to as far equatorward as 55° MLAT, and an
intensification and equatorward movement of the ring current precipitation regions. Interestingly enough,
the last four of these phenomena occurred during northward IMF conditions usually associated with
magnetic quieting.

The aims of this paper are several. The first is to examine in detail the development of a CDPS under extremes
in solar wind density and speed by combining observations with a fully coupled global modeling suite including
MHD magnetosphere, inner magnetosphere, and ionospheric electrodynamics models. This represents an
enhancement over recent simulations of the CDPS development [Li et al., 2005, 2008, 2011] which did not
include self-consistent calculation of the inner magnetospheric drift physics. The second is to combine all of
these observations with those already reported and with the global models to investigate the features in
geospace that developed, the linkages between them, and their connections to the solar filament.

To explore the coupling within the system, we follow the chain of events from Sun to geospace, tracing the
effects of events in one sphere (heliosphere, magnetosphere, ionosphere, and atmosphere) on the other
spheres. Following the linkages throughout the system is dependent on detailed knowledge of the individual
components. This synoptic approach rather than being independent of focused process studies actually
completes them by demonstrating how these processes interact within the global system, and feeds back
to ask new questions that further increase our knowledge about the components that compose the
interconnections. The synoptic investigation of extreme events has emerged as an important research area in
other scientific disciplines, most notably meteorology and climate sciences, leading to new insights into
global conditions that produce extreme weather and climate [cf. Peterson et al., 2012, 2013]. A similar need
to understand extreme space weather drives the selection of methodologies here. There is developing
recognition that an integrated approach involving multiple discipline areas is required for progress.

The study reported here involves multiple instruments on 18 different satellites, ground-based instruments,
and three interlinked global models. The location and orbits of satellites and the portions of the Sun-Earth
system covered by ground-based instruments represent a particular configuration of the Heliophysics
System Observatory, which will be described in section 2. Details of the instruments and observations will
be given as data sets are introduced in the discussion of specific features. Section 3 provides details of the
global models and inputs. Section 4 gives an integrated view of the solar wind and geospace conditions on
21–22 January 2005 by combining observations and model outputs and identifies some of the key coupling
issues. Section 5 goes into more detail to understand the formation of two intervals of CDPS—one warm
and the other cooler—the configuration of the magnetotail in each case, and the magnetotail stretching
that accompanied their formation. Section 6 examines the processes responsible for the unusual features
observed during this storm and the connections between them. Section 7 provides a summary and conclusions
and briefly explores implications.

2. The Configuration of the Heliophysics System Observatory
and Collaborating Programs

Twelve magnetospheric and interplanetary satellites contributed information on the solar wind inputs and
the magnetospheric responses. These include (1) the Advanced Composition Explorer (ACE) [Gloeckler et al.,
1998; Stone et al., 1998], (2) the four Cluster satellites [Escoubet et al., 2001], (3) the Chinese Double Star TC-1
satellite [Liu et al., 2005b; Reme et al., 2005], (4) the Imager for Magnetopause-to-Aurora Global Exploration
(IMAGE) satellite [Burch, 2000; Mitchell et al., 2000; Mende et al., 2000], and (5) five geosynchronous satellites
from Los Alamos National Laboratory (LANL-94, 97A, 90, 01A, and 02A) in different local time planes [Bame et al.,
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1993; Thomsen et al., 1997]. The ACE
satellite was located at an (X, Y, Z) of
(221.96 RE, �35.02 RE, 21.52 RE) GSE and
(221.96 RE, �38.29 RE, 14.97 RE) GSM
upstream of the Earth at the Lagrangian
L1 pointmonitoring solar wind conditions.
The Cluster satellites were just upstream
of the Earth’s bow shock at X~ 14.7 RE
acting as very close solar wind monitors
as the interplanetary shock leading the
ICME struck the Earth. Figure 1 shows
the configuration of magnetospheric
satellites in the Heliophysics System
Observatory with the addition of the
Chinese Double Star TC-1 satellite. Solid
lines show the orbit of each satellite
from 21 January 16:00 UT to 22 January
06:00 UT while the symbol indicates the
position of each satellite at the start of

this interval. Though Polar observations are not used in this paper, they were utilized as part of the broader
study of this unusual event and so the Polar orbit is included in the plot for completeness.

Nine low-altitude satellites contributed information on the propagation of effects into the ionosphere and
atmosphere. These include (1) the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED)
mission [Paxton et al., 1999, 2004; Christensen et al., 2003], (2) the Defense Meteorological Satellites Program
(DMSP) satellites F13, F14, F15, F16 [Hardy et al., 1984; Rich and Hairston, 1994; Hairston et al., 1998], (3) the
NOAA Polar Orbiting Environment Sensors (POES) (N15, N16, N17) [Evans and Greer, 2000], and (4) the Fast
Auroral Snapshot Explorer (FAST) [Carlson et al., 1998, 2001]. Figure 2 shows the magnetic local time planes of
each of these satellite orbits. More details about the instruments will be presented as the data sets are
introduced below.

3. Global Models

The suite of global models being used in this effort was developed at the Center for Space Environment
Modeling (CSEM) at the University of Michigan and was run for this study both at the University of Michigan

and at the Community Coordinated
Modeling Center (CCMC) at Goddard
Space Flight Center. The Space Weather
Modeling Framework (SWMF) [Tóth
et al., 2005, 2012] links these large-scale
models together and, in doing so,
enables exploration of coupling and
feedback processes that are multiscale
and nonlinear.

The three models used in the study are
the Block-Adaptive-Tree Solar-Wind
Roe-Type Upwind Scheme (BATS-R-US)
MHDmodel of the globalmagnetosphere,
an inner magnetosphere model based
on the Rice ConvectionModel (RCM), and
an Ionospheric Electrodynamics (IE) solver.
The version of the BATS-R-USmodel used
here treats the plasma as a single fluid
transported in the cross-B direction by

Figure 1. The configuration of the magnetospheric satellites in the
Heliophysics System Observatory during the time interval from 16 UT
on 21 January to 06 UT on 22 January 2005 is given in GSE coordinates.
The symbols mark the start of the time interval.

Figure 2. Local time planes of low-altitude polar-orbiting satellites on
21 January 2005. These include DMSP F13, F14, F15, and F16 (yellow lines),
NOAA-N15, N16, and N17 (blue lines), FAST (green), and TIMED (red).
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E × B drift [Powell et al., 1999; De Zeeuw et al., 2000; Gombosi et al., 2002]. The plasma is described as an ideal
gas with infinite electrical conductivity, which means that the plasma is in effect stuck to individual magnetic
field lines. Since gradient and curvature drifts in the inner magnetosphere are energy and velocity dependent
and can be faster than the E × B drifts in this region, the 1–200 keV ions and electrons that are the main
pressure-bearing populations in this region are not well described in global MHD models.

To remedy this, the drift physics of the energetic particles in the inner magnetosphere is added using a
module based on the RCM [De Zeeuw et al., 2004]. The RCM solves the equations of motion for plasma in
the inner and middle magnetosphere coupled with current conservation in the ionosphere [cf. Wolf, 1983;
Toffoletto et al., 2003]. The particle distribution is represented by a large number (~100) of isotropic “fluids”
that are each advected by a combination of gradient, curvature, and E × B drifts. Because the gradient and
curvature drifts are divergent, currents develop that flow along magnetic fields lines into and out of the
ionosphere. Ionospheric conductance, which is a combination of a time-dependent solar EUV-produced
component and an auroral enhancement that varies directly with precipitation and field-aligned currents
(FACs), is supplied to the RCM by the Ionospheric Electrodynamics (IE) module [Ridley and Liemohn, 2002;
Ridley et al., 2004]. As FACs close through the ionosphere, electric fields are produced that map back into the
inner magnetosphere along field lines assumed to be equipotentials. The electric fields self-consistently
modify the particle drifts to include an additional E × B component in the hot plasma transport equations.

The technical details of the coupling between the BATS-R-US and RCM are described by De Zeeuw et al. [2004].
In brief, the BATS-R-US model supplies the RCM with bulk plasma parameters and the potential distribution at
the outer edge of the RCM domain along with the magnetic field configuration inside. The RCM returns a
“corrected” plasma pressure within the inner magnetosphere, which is used to nudge the MHD solution with a
relaxation time that is typically set to 100 s.

The ionosphere is represented by a two-dimensional layer with prescribed finite Pedersen (ΣP) and Hall (ΣH)
conductances. Electrodynamic coupling to the ionosphere is added by the IE module, which solves for the
two-dimensional electrostatic potential using FACs from the BATS-R-US model. The IE module passes electric
potentials back to BATS-R-US, which are applied as the transverse E × B drift at the inner boundary.

With the combination of all three models, the physical processes of interest in this study are well represented.
For example, studies have confirmed that global MHDmodels reproduce well the magnetic field configuration
and its dynamical response to solar wind conditions, the position of boundaries, plasma regions like the
lobes and plasma sheet, the strength of magnetopause, cross-tail, region 1, and NBZ currents, convection
patterns under northward and southward IMF conditions, and the open-closed field line boundary
projected to the ionosphere [cf. Janhunen and Palmroth, 2001]. The formations of cold dense plasma sheets
under northward IMF conditions have been represented in MHD simulations with timing and duration in
agreement with observations [cf. Li et al., 2005, 2008]. The RCM enables a realistic simulation of region 2
currents, undershielding, and overshielding of the inner magnetosphere from convection electric fields
and of self-consistent potential patterns in the inner magnetosphere. The coupled RCM and MHD codes
produce observational features not well represented in the MHD model alone, including stronger region 2
currents, partial shielding of the inner magnetosphere from convection electric fields during southward
IMF conditions [De Zeeuw et al., 2004], and the location and evolution of the open-closed magnetic field
line boundary [Rae et al., 2010].

The simulations used in the present study were downloaded directly from CCMC’s model archive. They were
originally run for an ionospheric study and are here integrated with observations into a synoptic analysis
of the entire geospace response to the solar filament impact. Simulations used two different configurations
of the SWMF. The first included the drift physics of the inner magnetosphere by coupling the BATS-R-US
MHD model with the RCM, the second used the BATS-R-US MHD model alone, all else being the same
(both runs included IE coupling). For ease of discussion, these will be referred to as the MHD+RCM and
MHD-only simulations, respectively. A comparison of these two simulations gives information on the
ring current contribution to the magnetospheric response and the effects of drift physics in the inner
magnetosphere on the development and characteristics of the CDPS. Simulation outputs at a 10 min
cadence in the magnetosphere and a 1 min cadence in the ionosphere are stored in the CCMC archive
under the identifiers Derek_Andeweg_111608_1 and Derek_Andeweg_111608_2, respectively. These
simulations were subsequently regenerated with a 1 min cadence in the magnetospheric output files
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to examine the rapid variations during the ICME sheath passage. The higher cadencemagnetospheric outputs
for the MHD+RCM run and the MHD-only run are available upon request from CCMC.

There are two simplifications used in these runs that should be noted. First, the IMF Bx was set to zero. To test
the consequences of this assumption, two identical simulations were run using the MHD+RCM configuration
in SWMF, one with IMF Bx from ACE and the other with IMF Bx set to zero. Only small differences developed
in the simulated SYM-H values by the end of the ring current development. Though these small changes are
interesting, we conclude that IMF Bx does not have a major effect on the global response.

Second, an underlying assumption in the RCM is that ions have isotropic pitch angle distributions and thus
are distributed uniformly along magnetic flux tubes. Because of this assumption, identical ionospheres in the
Northern and Southern Hemispheres are required. As a default, CCMC provides the RCM with the Northern
Hemisphere ionosphere and the assumption is made that both ionospheres are identical. This will affect the
off-equatorial ring current pressure distribution fed into the MHD model. Since the ring current pressure is
maximum in the equatorial plane, we assume the off-equatorial effects are small compared to the global-
scale behavior and rely on comparison to satellite observations to determine whether or not this assumption
is valid after the fact. Note that the ionospheres in the Northern and Southern Hemispheres are not required
to be the same in the MHD model and, in fact, include full seasonal effects.

Solar wind conditions were taken from the ACE spacecraft and then propagated in the BATS-R-USMHDmodel to
the magnetopause. At the time of shock arrival, Cluster was located at 14.7 RE just upstream of the Earth’s bow
shock. The shock arrived at Cluster at ~17:10 UT and the filament arrived at ~18:44 UT [Dandouras et al., 2009].
The shock in the simulation was delayed approximately 6min compared to the observed shock at Cluster,
arriving at 17:16 UTmodel time.We shift themodel time by 6min to agree with the shock arrival at Cluster such
that UT=UTmodel � 6min. By using a single time shift, we have an accurate adjustment for the arrival of the
shock but subsequent data points may still be displaced in time a small amount. By the time of the largest
southward IMF values within the ICME sheath region, no significant shift inmodel versus actual UTwas observed.

4. Overview of Solar Wind Inputs and Global Geospace Responses

On 20 January 2005, one of the fastest coronal mass ejections of solar cycle 23 lifted off the west limb of the
Sun and was observed at the ACE spacecraft upstream of Earth just 34 h later [cf. Pohjolainen et al., 2007;
Foullon et al., 2007]. As discussed in the introduction, the high-density material entrained in the ICME was
subsequently identified as solar filament material [Kozyra et al., 2013; Manchester et al., 2014]. Regions 1–3 in
Figure 3 refer to the sheath region, remnant flux rope, and opened outer layer of the initially larger flux rope,
respectively (described in Manchester et al. [2014]). The vertical dashed line (labeled SA) marks the arrival at
Earth of the shock leading the ICME and SB the discontinuity at the leading edge of the filament material.
These labels are consistent with Foullon et al. [2007] to make it easier to compare to their detailed analysis of
the solar wind parameters.

Figure 3 shows 1 min averages of the following solar wind parameters: (a) IMF clock angle, (b) IMF By GSM (nT),
(c) IMF Bz GSM (nT), and (d) solar wind proton density (cm�3). These quantities were observed by the ACE
spacecraft at the L1 position upstream of the Earth and propagated to the calculated position of the Earth’s bow
shock normal in the OMNI database at http://omniweb.gsfc.nasa.gov/. The ACE observations after 00:40 UT
on 22 January were reprocessed to compensate for increased background due to a solar particle event using
the search mode data, which has a temporal resolution of 33min (courtesy of R. Skoug and H. Elliott, 2005).
These reprocessed data were propagated from ACE to 10 RE using the observed solar wind Vx. There are a
number of unusual aspects to the solar wind observations that are essential to understanding the geospace
conditions that followed.

Between vertical lines SA and SB is a sheath region of compressed and heated solar wind plasma swept up in
front of the ICME on its way to Earth, shown in Figure 3d. Figure 3c displays the north–south component
of the interplanetary magnetic field (IMF) in the GSM (geocentric solar magnetospheric) coordinate system,
which has proven to be the most appropriate for relating IMF components to their magnetospheric and
ionospheric effects [Russell and McPherron, 1973]. The compressed southward IMF in the sheath region on
21 January reached �28 nT (red shading in Figure 3c). This value is comparable to the southward IMF that
drives superstorms but, in this case, it lasted for just 20min so the storm reached only moderate intensity.
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The vertical dotted line labeled SB
at ~ 18:45 UT marks the arrival of the
solar filament. Note that the filament
material appears directly following the
ICME sheath. Densities reached values
greater than 50 cm�3 and peak dynamic
pressure exceeded 60 nPa [Foullon et al.,
2007]. The northward IMF interval in
the remnant flux rope (region 2) had a
substantial IMF By component (Figure 3b)
but this component became weak or
zero in region 3 whichmarks the opened
field lines trailing the remnant flux rope
(Figure 3c). In this last region, the plasma
still retains the characteristics of the larger
coherent flux rope though the filament
densities drop substantially as the plasma
moves outward to fill the larger accessible
volume of space. Figure 3a shows the
IMF clock angle θ = atan (By/Bz) in GSM
coordinates. Due northward corresponds
to θ =0°, due southward to θ =±180°, due
eastward to θ =+90°, and due westward
to θ =�90°. As will be shown later, the
abrupt transition from obliquely to purely
northward IMF between regions 2 and 3
was important to the topology of the
magnetotail, driving a transition from an
open to closed magnetotail and from a
warmer to cooler CDPS.

The solar filament created many unsual
features in the ongoing geomagnetic
storm. A global overview of geospace
conditions is given in Figures 3e–3l. As the
solar filament struck the magnetosphere
just after 18:45 UT, the strong southward
IMF and steep solar wind density rise at
its leading edge produced an abrupt
change in the flow of energetic particles
within the magnetosphere, disrupting
further the partial shielding that existed
at the time. In this interval, electric fields
of solar wind origin (called prompt
penetration electric fields [cf. Kelley et al.,
1979]) increased in strength, enhancing
upward ion drifts in the equatorial
ionosphere. Two DMSP satellites reached
the equatorial ionosphere just after the
solar filament material hit. Figure 3i is a
plot of low-latitude vertical ion drifts

observed in the ionosphere by DMSP F15 over ± 25° MLAT. At 18:54 UT, DMSP F15 observed strong kilometer/
second upward vertical ion drifts. This is a signature of prompt penetration electric fields and marks a
further breakdown in shielding of the inner magnetosphere and underlying ionosphere by the ring current.

Figure 3. Solar and magnetospheric parameters during the time interval
from 16 UT on 21 January to 06 UT on 22 January 2005. Vertical lines SA
and SB mark the shock and solar filament arrivals, respectively. Regions 1,
2, and 3 mark the time intervals associated with the sheath region, the
remnant flux rope, and the opened outer layer of the flux rope as discussed
in a companion paper by Manchester et al. [2014].
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This breakdown in shielding is usually seen only for major magnetic storms and is surprising in association
with the more modest 21 January 2005 storm event.

The cross-polar cap potential (CPCP) in Figure 3f is an important global measure of the energy coupling
between the magnetosphere and the solar wind. The observed CPCP was provided by the assimilative
mapping of ionospheric electrodynamics (AMIE) technique [Richmond and Kamide, 1988] utilizing data from
the DMSP F13 and F15 satellites, NOAA-15, 16, and 17 satellites, the SuperDARN radar network, and 188
ground magnetometers. There are two peaks in the CPCP that correspond to the two strong intervals of
southward IMF, one in the ICME sheath and one at the leading edge of the solar filament (shown in Panel c).
The CPCP drops but remains elevated as the IMF turns obliquely northward in association with the filament.
This indicates that, although the IMF is northward, substantial energy is still entering geospace from the solar
wind because of the large IMF By. The CPCP drops to its lowest values, as one would expect, when the IMF
rotates due northward in the trailing portion of the ICME. The calculated CPCP values from the MHD-only
(green line) and the MHD+RCM (blue line) simulations are also plotted. The MHD-only simulation overpredicts
the CPCP peak values by up to 100 kV, while the MHD+RCM simulation is in remarkable agreement with the
observations. This agreement provides confirmation that the MHD+RCM simulation is correctly reproducing
the basic energetics of the solar wind-magnetosphere coupling for this event.

Figure 3g displays the Joule heating derived using the AMIE procedure. Joule heating is calculated from
ΣP[E

2 + (δe)2], where the height-integrated Pedersen conductance ΣP is obtained by assimilating precipitating
particle data from DMSP and NOAA satellites into the empirical conductance model of Fuller-Rowell and Evans
[1987], E is the AMIE estimated electric field, and δe is the error associated with the estimated large-scale
electric field E from AMIE. More information can be found in Lu et al. [1996]. The AMIE procedure does not
take into account neutral wind effect, which can increase or decrease the Joule heating rate depending on
the orientation between the winds and ion drifts [cf. Lu et al., 1995].

The very large initial peak in Joule heating near 17:40 UT is associated with the extreme auroral activity discussed
in the introduction during which the AL drops to values more negative than �3000 nT. The second Joule
heating peak near 18:40 UT is associated with the strongest southward IMF of the storm in the trailing edge of
the ICME sheath. The third peak, which is comparable in magnitude to the second, occurs during the short
interval of southward IMF at the leading edge of the solar filament near 19:00 UT as solar wind dynamic
pressure rises. Since the DMSP satellites used in the construction of the Joule heating rates did not cross
through the cusp region but skirted it on the dawnside or duskside, the contribution of the cusps to the Joule
heating rates produced by the AMIE model is likely to be underestimated, which may change the relative
strengths of these three peaks. The MHD+RCM simulation discussed in section 5.2.1 below indicates that
maximum Joule heating rates actually occurred at the leading edge of the solar filament. The burst of Joule
heating represented by the three peaks was responsible for generating a neutral wind surge linked to an
intensification of the equatorial anomaly crests later in the storm. The relative contributions of these three
Joule heating peaks to the neutral wind surge on the dayside depend on the local time distribution of the
Joule heating (examples shown in Figure 7). The connection between this spike in Joule heating and unusual
features in the equatorial electrodynamics is discussed further in section 6.2.2.

Figures 3k and 3l give the nightside geosynchronous plasma sheet densities and temperatures, respectively,
observed by the Los Alamos Magnetospheric Plasma Analyzers (MPA) [Bame et al., 1993] on satellites L-90,
L-94, L-97A, L-01A, and L-02A. Observations from all satellites within the 20:00 to 04:00 magnetic local time
(MLT) window are plotted at a given UT. MPA measures ion and electron fluxes from 1 eV/q to 45 keV/q in
40 logarithmically spaced channels. Moments of density and temperature shown here are derived for hot
ions (>100 eV) [Thomsen et al., 1997]. Note MPA does not distinguish ion mass so density calculations assume
that all ions are protons. This means that the ion density, given in Figure 3k, will be underestimated by a
factor of the sqrt(mi/mp), wheremp is the proton mass, if a significant fraction of heavy ions with massmi are
present. Temperatures, given in Figure 3l, will not be affected by the presence of a heavy ion component.
As the IMF turned obliquely northward at 19:00 UT (see clock angles in Figure 3a), the capture of solar filament
material into themagnetosphere began. Within 1h by 20:00 UT, a CDPS appeared at geosynchronous orbit on the
nightside formed from the filament material.

The CDPS is a different state than the superdense plasma sheets originally discovered in observations at
geosynchronous orbit [Borovsky et al., 1997, 1998]. The superdense plasma sheet with density in excess of
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2 cm�3 has a temperature not significantly different from typical values. Its presence is correlated with high
density in the solar wind during southward IMF conditions. Increased plasma sheet density reaches the
nightside at geosynchronous orbit with a delay of 2 h from the arrival of dense solar wind at the magnetopause
and sweeps around the inner magnetosphere to the dayside in about 8 h time.

In contrast, a CDPS builds in the outer magnetosphere during northward IMF conditions [cf. Fujimoto et al.,
2000, 2002, 2005; Phan et al., 2000; Nishino et al., 2002;Welling and Ridley, 2010]. Densities increase first on the
dayside just inside the magnetopause, reaching values approaching the magnetosheath densities within
tens of minutes [Li et al., 2005]. The flank low-latitude boundary layer (LLBL) becomes denser and thicker and
feeds the plasma sheet on the nightside from the flanks inward, building a magnetotail CDPS on a timescale
of ~3 h. The CDPS is not seen at geosynchronous orbit unless the IMF immediately turns strongly southward
triggering a magnetic storm or the magnetosphere is compressed by high solar wind dynamic pressure
[Thomsen et al., 2003; Lavraud et al., 2005] as is the case during 21 January 2005.

Conditions during the 21 January 2005 magnetic storm allow a detailed examination of the differences
between the CDPS during obliquely northward compared to due northward IMF conditions. When the IMF is
obliquely northward from 20:00 to 21:30 UT, a warm (Ti~8.5 keV) superdense (maximum n~ 4.5–6 cm�3)
plasma sheet is seen at geosynchronous orbit. This is still cool compared to typical plasma sheets under
southward IMF conditions. However, when the IMF turns more purely northward between 22:40 on 21 January
and 01:10 UT the next day, the plasma sheet becomes still cooler (~6 keV or 7 × 107 K) but remains superdense
(maximum n~4–5.5 cm�3). In contrast, typical temperatures at geosynchronous orbit reach 20 keV and densities
are 0.5–1.5 cm�3 [Borovsky et al., 1998]. We refer here to the CDPS during obliquely northward conditions
as a warm dense plasma sheet (WDPS) and during more purely northward conditions as a CDPS to call
attention to this difference in temperature, which is also clearly seen in the simulation (see section 5.5 below).

In between the time of the WDPS and the CDPS, geosynchronous satellites observed a region of extremely
low density from ~21:20 UT to ~22:20 UT, which we identify as an excursion into the magnetotail lobe.
This entry into the lobes implies that the magnetic field lines have been distorted due to strong stretching of
themagnetotail [cf. Thomsen et al., 1994]. One way to test this suggestion is through the time variations in the
so-called b2i boundary [Newell et al., 1998] plotted in Figure 3j. The b2i boundary is believed to mark the
location where the magnetic field topology transitions from dipolar to stretched. In response to this change
in magnetic field topology, the tens of keV proton pitch angle distribution observed in low-Earth orbit
transitions from isotropic with a filled loss cone (due to scattering in the stretchedmagnetotail) to anisotropic
with a nearly empty loss cone in the more dipolar fields of the inner magnetosphere [Sergeev et al., 1983,
1993]. Just poleward of this boundary, locally mirroring and precipitating ion fluxes reach a peak. The peak in
the energy flux of precipitating 3 keV ions observed by DMSP is used in an automated identification of the
isotropy boundary (b2i) [Newell et al., 1998].

During the 21 January storm, the b2i boundary moved inward to 55° MLAT, indicative of increased magnetotail
stretching, beginning at 21:20 UTat the same time that LANL geosynchronous satellites entered themagnetotail
lobe on the nightside. Even though the LANL satellites remained in the lobe until ~22:20 UT, there was an
apparent movement of the b2i boundary 5° poleward at 21:05 UT and then an abrupt drop to continue a
more gradual recovery to higher MLATs. To understand this behavior, spectrograms of flux versus ion energy and
UT were used to manually locate the b2i boundaries during this interval. The three Southern Hemisphere (red)
data points after 21:20 UT were taken from different DMSP satellites (F13, F16, and F15, respectively, in order of
increasing time) at increasing MLTs from ~18 to 20 h. The same for the three Northern Hemisphere (blue) data
points after 22:05. However, during this entire time interval, exceptionally strong precipitating ion fluxes used in
calculating b2i were observed with broad flat peaks in intensity covered 5°–6° MLAT. The entire region of
intense precipitating ion flux shifted equatorward after 21:20 UT and then began retreating poleward again
after 22:04 UT. Changes in the MLAT selected as the peak very likely resulted from variations in the overall
shape of the broad flat flux peak rather than a true major poleward shift in the isotropy boundary.

Figure 3h displays the AU and AL indices, which are a direct measurement of the maximum current in the
eastward and westward auroral electrojets, respectively, taken at magnetometer stations between 60° and 70°
geomagnetic latitude [cf. Kamide and Akasofu, 1983; Kamide and Rostoker, 2004]. They are thus representative
of the level of activity in the auroral oval when the electrojets are within this band of geomagnetic latitudes.
Enhancements in AL are generally taken to indicate auroral substorm activity; while enhancements in AU
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relate to increases in magnetospheric convection. AL reached exceptionally high values in association with
the interplanetary shock and the sheath region ahead of the ICME. AUwas relatively weak in this time interval
but became elevated in association with the rise in dynamic pressure with the solar filament. However,
both AU and AL reached their lowest absolute values at the time of strong magnetotail stretching indicated
by the low-latitude location of the b2i boundary. This is unusual since strong stretching is normally associated
with high geomagnetic activity.

Finally, the SYM-H index is plotted in Figure 3e. The SYM-H index is constructed from the average of the H
component of the geomagnetic field observed at six midlatitude stations after a quiet time baseline is removed
[Iyemori, 1990]. SYM-H gives information on the energy in the symmetric ring current as does Dst [cf. Dessler
and Parker, 1959; Sckopke, 1966] but at a 1min cadence as opposed to the 1 h resolution of the Dst index
[cf.Wanliss and Showalter, 2006; Katus and Liemohn, 2013]. Duringmagnetic storms, the SYM-H index is believed
to be dominated by the ring current contribution and thus is used to monitor the ring current development
and to provide a measure of the severity of a magnetic storm. However, there are also contributions from
magnetic fields generated by magnetopause, field-aligned and magnetotail currents, as well as induced
currents in the solid Earth. Comprehensive reviews of these other contributions are given byMcPherron [1997]
and Gonzalez et al. [1994].

To extract information about the ring current evolution and the storm severity, the SYM-H index is typically
corrected to remove contributions from other current systems. The SYM-H index corrected for only the effects
of the induced currents in the solid Earth and for the quiet time ring current is given by SYM-H′ (red line in
Figure 3e). SYM-H′ can be directly compared to simulation outputs which naturally include the complete
set of magnetospheric currents. SYM-H* (black line) is the observed SYM-H′ with an additional correction
to remove the time-dependent contributions of enhanced magnetopause currents produced by high solar
wind dynamic pressure. These two forms of the SYM-H index are given by

SYM-H′ ¼ SYM-Hþ cð Þ=1:3
SYM-H* ¼ SYM-H–b*Vsw*sqrt Np

� �þ c
� �

=1:3

where Np is the solar wind proton density in cm�3, Vsw is the solar wind speed in km/s, b is a proportionality
factor, and c is the contribution of the quiet time ring current. In the present work, we use b=0.2 nT/(eVcm�3)1/2

and c=20 nT [cf. Burton et al., 1975; Gonzalez et al., 1994]. The factor 1.3 removes contributions from the
diamagnetic Earth [Dessler and Parker, 1959; Langel and Estes, 1985].

There are two sudden impulses (SIs) observable in the SYM-H indices, the first at the shock arrival (17:11 UT)
and the second at the filament arrival (~18:45 UT). The ring current builds during three separate intervals.
The first two are associated with strong southward IMF intervals in the sheath region ahead of the ICME
and are each followed by partial recoveries of the ring current as the IMF rotates northward. The last is
associated with the compression and then expansion of the magnetosphere by a strong spike in dynamic
pressure at ~21:00 UT during northward IMF conditions. In all cases, the time lag between the arrival of a
discontinuity in the IMF or solar wind and the corresponding discontinuous change in the observed SYM-H
index was only 10min or less. This is consistent with the 0 to 4 h time lag in statistical studies that relate the
peak in IMF Bz or solar wind electric field with the minimum in Dst [Smith et al., 1999; O’Brien and McPherron,
2000; Gonzalez and Echer, 2005].

The modeled SYM-H′ from the MHD-only simulation (green line) and from the MHD+RCM simulation (blue
line) is also plotted. Again there is remarkable agreement between the observed values of the SYM-H′ and the
MHD+RCM simulation. This gives us confidence that the MHD+RCM simulation is reproducing the major
features of the event. The SYM-H′ from the MHD-only simulation (green line) remains positive throughout,
indicating no significant ring current development.

There are two unusual aspects to the SYM-H during this event. First, the ring current was powered by
intervals of southward IMF lasting less than 30min each. Statistical studies indicate that strong magnetic
storms with minimum Dst ≤�100 nT require a threshold of IMF Bz≤�10 nT for a minimum of 3 h
[cf. Gonzalez et al., 1994]. Second, the ring current growth continued reaching minimum SYM-H* values
during northward IMF conditions. This was pointed out by Du et al. [2008] and is believed to be the first
such reported instance of this kind.
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5. The IMF By Magnetosphere
5.1. Reconnection Under Strong Versus Weak IMF By

The same process that captures solar wind plasma to form a cold dense plasma sheet also produces intense
field aligned currents, strong electric fields and high Joule heating rates in the cusp region when significant
IMF By is also present. In the case of the 21 January storm, the high speed and exceptional dynamic pressure
of the solar filament further amplified these effects. Another important factor was the arrival of the filament
after a significant ring current had already formed. The formation of the CDPS and related effects are important
factors in many of the unusual geospace features observed during the storm.

This paper presents two important advances. First, we expand upon previous MHD simulations of the CDPS
[cf. Li et al., 2005, 2008; Welling and Ridley, 2010] by including a coupled kinetic model of the ring current
so the investigation of this phenomena can be extended farther into the inner magnetosphere. These
previous simulations, using only MHD models, underpredicted the temperatures in the inner magnetosphere
by an order of magnitude and thus were forced to consider only regions more distant from the Earth in
their analysis. Second, a rich data set from the combined LANL geosynchronous satellites and Double
Star TC-1 covering all magnetic local times is available to compare with the simulation. The compression
of the magnetopause to locations inside geosynchronous orbit on the dayside allowed these satellites
to sample conditions in the magnetosheath, low-latitude boundary layer, dayside magnetosphere, and
nightside plasma sheet.

The development of the CDPS is the result of a recently appreciated mode of coupling between the solar
wind and the magnetosphere as simultaneous or nearly simultaneous lobe (also called poleward-of-cusp)
reconnection in both hemispheres converts IMF flux tubes containing solar wind plasma directly into
magnetospheric flux tubes [cf. Song and Russell, 1992; Raeder et al., 1995, 1997]. The result is a large rate of
solar wind mass transfer into the magnetosphere [cf. Palmroth et al., 2006; Lavraud et al., 2006; Øieroset
et al., 2005, 2008; Li et al., 2005, 2008, 2011], which is not species or charge-state dependent. Simulations
and observations show that this process creates the dayside LLBL in a timescale on the order of 10 min
and a nightside CDPS with a time delay of hours. In this case, exceptionally dense solar filament material
entered the magnetosphere.

As these studies have demonstrated, in the process of double lobe reconnection, the IMF merges with a lobe
field line in one hemisphere creating an open field line that drapes over the dayside magnetopause into the
opposite hemisphere. This open field line subsequently recloses at the reconnection site poleward of the
cusp in the opposite hemisphere capturing solar wind plasma, which is relatively cold (~1 keV), into
themagnetosphere. The closed field line moves sunward under the action of magnetic tension, sinks into the
magnetosphere, and then drifts to the nightside in response to pressure gradients, building a dense plasma
sheet on the nightside from the flanks inward.

When a significant IMF By component is present, the cusp is shifted away from noon in both hemispheres.
For positive IMF By, the shift is toward the duskside in the Northern Hemisphere and the dawnside in the
Southern Hemisphere. For negative IMF By, the opposite occurs. As pointed out by Imber et al. [2006], because
of this displacement, different interplanetary magnetic field lines interact independently with reconnection
sites in the Northern and Southern Hemispheres. Figure 4 shows the magnetospheric configuration at 20:05 UT
in the MHD+RCM simulation under northward IMF conditions with a significant eastward (positive) By
component that existed during the WDPS interval. The regions of minimummagnetic field strength mark the
cusps in the upper panel, which is a magnetospheric cross section at X= 2 RE. The cusps are shifted to the
duskside in the Northern Hemisphere and the dawnside in the Southern Hemisphere as expected. The lines
in the figure are magnetic field lines projected into the YZ plane. Planes intersecting the two cusps are given
in the figure—one intersecting the southern cusp at Y=�3 RE and the other the northern cusp at Y=+2 RE.
Reconnection in the Southern Hemisphere between the IMF and a lobe field line creates an open field line that
overdrapes into the Northern Hemisphere. In agreement with Li et al. [2011], the newly opened field linemoves
sunward as it straightens out and then moves toward noon and also toward the Northern Hemisphere cusp
region under the influence of the solar wind flow. The result is a region of overdraped open field lines just
outside the magnetopause on the duskside that are connected to the Southern Hemisphere and on the
dawnside that are connected to the Northern Hemisphere. An X line develops in the Northern Hemisphere as
the overdraped field line from the Southern Hemisphere reaches the cusp null in the Northern Hemisphere.
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At this site, Southern Hemisphere open
field lines are reclosed and subsequently
sink into the magnetosphere. Farther
tailward, the reconnection process
returns IMF to interplanetary space. As
soon as a closed field line is created,
solar wind plasma is trapped within the
magnetosphere forming a boundary
region of magnetosheath-like plasma
on closed field lines. A similar process
occurs in the Northern Hemisphere on
the duskside, shown in Figure 4 in the
Y= 2 RE plane.

During due northward IMF, both cusps
are located close to noon MLT. A single
IMF field line can drape over the
magnetopause intersecting cusp nulls
in both hemispheres and reconnecting
poleward of both cusps nearly
simultaneously. This process converts
an IMF flux tube containing solar wind
plasma nearly instantaneously into a
magnetospheric flux tube. And, in fact,
for IMF clock angles of ±10°, there is
evidence for this dual-lobe reconnection
process [Imber et al., 2006]. However,
because of the dipole tilt in January,
even for due northward IMF conditions,
reconnection occurs at different times
in the two hemispheres rather than
simultaneously. As a result, the same
double high-latitude reconnection
process operates in the simulation under
due northward IMF conditions as well.
This configuration is shown in Figure 5 in
the same format as in Figure 4 but at
21:35 UT during due northward IMF
conditions associated with the second
CDPS interval in the simulation. Figure 5
(top) shows both cusps near noon as

expected. Figure 5 (bottom) intersects the two cusps in the Y= 0 plane. The direction of the dipole tilt selects
the hemisphere where reconnection begins first [Lavraud et al., 2005] and is strongest. Because the southern
cusp is shifted closer to the subsolar point, magnetosheath flows are slower there. With slower flows,
reconnection rates are larger [cf. Park et al., 2006]. Field lines reconnect there first and the open field line
overdrapes directly into the Northern Hemisphere cusp region to reclose. These overdraped field lines from
the Southern Hemisphere do not have far to travel before encountering the cusp null in the Northern
Hemisphere and reclosing. So the reconnection is nearly simultaneous in both hemispheres, creating a thin
layer of open field lines just outside the magnetopause connected to the Southern Hemisphere only.

Figure 6 shows density contours in the equatorial plane and through the northern cusp region near the same
times as in Figures 4 and 5 that have been color coded based on the topology of the magnetic field lines
crossing these planes. Red indicates closed field lines, blue IMF, green open field lines with footpoints in the
Southern Hemisphere, and gold open field lines with footpoints in the Northern Hemisphere. The contours of
high density associated with the subsolar LLBL and cusp are marked in these plots. At 20:05 UT, when the IMF

Figure 4. Cross sections of magnetic field strength from the MHD+RCM
simulation showing double lobe reconnection during the strong IMF By
and northward IMF conditions associated with the initial formation of the
cold dense plasma sheet at 20:05 UT on 21 January 2005. The top shows
the weak magnetic fields (blue) that identify the cusp regions shifted
to the duskside in the Northern Hemisphere and the dawnside in the
Southern Hemisphere as is expected for positive IMF By. The dashed lines
indicate the locations of the two XZ cross sections shown in the lower
part of the figure—the first intersecting the southern cusp and the second
the northern cusp. Each cusp reconnects independently with the IMF.
Open field lines then overdrape into the opposite hemisphere and move
toward noon from either side reclosing poleward of the opposite cusp.
The solar wind plasma on the IMF segment of the reclosed field line is
captured directly into the magnetosphere.
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is northward but with a significant IMF By component, a layer of
open field lines appears just outside the magnetopause. These
open field lines connect to the Southern Hemisphere on the
duskside and the Northern Hemisphere on the dawnside as implied
by Figure 4. At 21:35 UT, when the IMF is almost due northward,
the shortened time delay between reconnection in the Southern
Hemisphere (where it begins first) and reclosure in the Northern
Hemisphere produces a thinner layer of open field lines anchored in
the Southern Hemisphere (green) only. An important consequence
of the double lobe reconnection is that both the northern cusp
and the LLBL are on closed field lines (red).

5.2. Energy Inputs in the Cusp Region
5.2.1. Intense Joule Heating
Intense Joule heating in the cusp region is another important
consequence of reconnection during significant IMF By conditions
combined with either northward or southward IMF. As pointed
out by Li et al. [2011] on the basis of an MHD simulation, the total
cusp Joule heating varies with the magnitude of the IMF By
component, the speed of the solar wind, and the strength of the
field aligned currents. All of these elements are enhanced during
the time of the filament impact on 21 January 2005 resulting in
exceptional levels of Joule heating on the dayside. A detailed
description of the processes involved is presented by Li et al. [2011],
which is briefly summarized here. Focusing for the moment on the
case of northward IMF and positive IMF By as an example, the cusps
are shifted to the duskside in the Northern Hemisphere and the
dawnside in the Southern Hemisphere. The reverse is true for
negative IMF By. Poleward-of-cusp (or lobe) reconnection creates
an open field line which is subsequently dragged along by the
solar wind flow, first sunward from dusk toward noon to remove
the kink in the field line (produced by lobe reconnection) and then
along the flanks to themagnetotail. The magnitude of the IMF By is
important because it essentially controls the length and orientation
of the path taken by the field line through the ionosphere through
the shift of the reconnection site (cusp) toward dusk. As the field
line is pulled through the ionospheric plasma, the collisional friction
between the ions moving with the field line and the background
neutrals cause intense heating. In another way of looking at this
process, the movement of the field line through the ionosphere
creates two intense and oppositely directed FACs in the cusp
region. As these FACs close through the ionosphere, a fast E × B
flow channel develops between them. This fast flow channel is
associated with strong electric fields which produce large Joule

heating rates. The stronger the FACs, the stronger the closure currents and Joule heating all else being equal.
When the field lines eventually reclose, they are no longer dragged along by the fast solar wind flow, and the
Joule heating rate drops. If the variation in the ionospheric electric field with height is neglected, the Joule
heating rate for the volume below a satellite in low-Earth orbit is approximately equal to the Poynting flux.

The strong dynamic pressure of the solar filament must also be a factor in amplifying the cusp Joule heating
rates during this event. It is known that high dynamic pressure enhances the entire magnetospheric current
system within minutes and intensifies particle precipitation [cf. Zhou and Tsurutani, 1999, 2003; Zhou et al.,
2003; Liou et al., 2007; Laundal and Østgaard, 2008]—two important factors in cusp-region energy input.
It also dramatically increases the projected area of the cusp in the ionosphere even during northward IMF
conditions [Newell and Meng, 1994]. All of these factors must increase the integrated Joule heating and

Figure 5. Cross sections of magnetic field
strength are presented from the MHD+RCM
simulation showing double poleward-of-cusp
reconnection during almost purely north-
ward IMF conditions later in the storm at
21:35 UT on 21 January 2005. The top shows
the weak magnetic fields (blue) that identify
the cusps at noon MLT in both hemispheres.
The dashed line indicates the location of
the XZ cross section shown in the lower part
of the figure. Because of the dipole tilt in
January, reconnection begins first in the
Southern Hemisphere. Open field lines
overdrape into the Northern Hemisphere
and are rapidly reclosed by a second pole-
ward-of-cusp reconnection capturing solar
wind plasma contained on the field line.
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precipitating particle flux in the cusp and
thus amplify the energy input into the
atmosphere in this region though the
exact nature of this interconnection
requires further investigation.

Figure 7 compares the simulated Joule
heating rates and their projected area in
the ionosphere from the MHD+RCM
simulation at selected times before and
after the arrival of the solar filament.
Since the simulation provides a measure
of the magnitude of the total current
density, we calculate the Ohmic
dissipation rate from the expression,
Wdiss = E · J = J2ΣP/(ΣP

2 + ΣH
2), where J is

the horizontal current, ΣP is the Pedersen
conductance, and ΣH is the Hall
conductance. As shown in the formula,
Joule heating is proportional to horizontal
ionospheric Pedersen currents that close
between the regions 1 and 2 FACs in the
ionosphere and to the electric fields that
are generated in this process. Note that
these electric fields, in turn, drive Hall
currents that are the major contributor
to the ionospheric electrojet currents
and the ground geomagnetic signatures.
Of course, the contributions of neutral
winds to the Joule heating rates [cf. Lu
et al., 1995] are not included in this
calculation. The errors introduced by this
approximation during the 21 January 2005
storm, during which significant neutral
winds developed in response to the strong
Joule heating in the cusp region (discussed
in section 6.2.2), require further study.

For each selected time, Figure 7 (top row)
displays Joule heating rates in the ionosphere with the maximum value of the Joule heating rate in mW/m2

indicated in the upper right-hand corner, (middle row) the FACs Jpar, and (bottom row) the ionospheric electric
field. In agreement with Li et al. [2011], we find that regions of Joule heating are greatly expanded during
intervals of larger clock angle (stronger IMF By). It is important to note that even for comparable IMF
orientations, there was a dramatic increase in the area of ionospheric cusp signature after the arrival of the
high dynamic pressures in the solar filament.

The MLT distribution of the Joule heating varied significantly depending on the IMF orientation. During the
strongest southward IMF of the storm at 18:39 UT, Joule heating rates peaked near midnightMLTat 168mW/m2

while in the cusp, they reached only 80mW/m2. At 18:50 UT, an abrupt and almost step-like increase in cusp
region Joule heating to maximum values of 174mW/m2 occurred near 18:50 UT in the presence of strong IMF
By and high dynamic pressure at the leading edge of the solar filament despite the somewhat weaker
southward IMF. The arrival of the solar filament greatly expanded the ionospheric area occupied by the
strongest cusp Joule heating rates compared to the area at 18:39 UT prior to the filament arrival. Maximum
Joule heating rates in the obliquely northward IMF portion of the filament fell to ~ 80mW/m2 dropping
gradually to tens of mW/m2 by 20:30 UT and then lower as the IMF turned more purely northward. The result
is a large spike in Joule heating from 18:47 to 20:00 UT over the course of a little more than an hour.

Figure 6. Contours of log N on XY planes through the cusp and in the
equatorial plane are given at two times during the simulation—19:55 UT
during comparable IMF By and Bz and at 21:35 UT during almost purely
northward IMF. The signature of the high densities in the cusp and in the
subsolar LLBL is indicated. Magnetic field lines through these planes are
color coded by their topology as indicated. In both cases, the cusp and
LLBL are on closed field lines.
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For the strong IMF By conditions at 18:50 UT, 19:25 UT, and 20:30 UT in the figure, the largest electric fields
and Joule heating rates are found in narrow flow channels that develop between large-scale FACs on the
dayside in agreement with Li et al. [2011]. But strong electric fields also develop on the nightside in association
with the partial closure of region 2 FACs through the low conductances equatorward of the auroral oval.
These strong electric fields, which maximize during the period of southward IMF and high solar wind density
at the leading edge of the solar filament, are associated with the ring current development and are not
present in the MHD-only simulation (see Figure 19). However, they produce only weak levels of Joule heating
due to the low conductances in this region.

The Joule heating rates in the MHD+RCM simulation are compared to the unusual levels of downward
Poynting flux into the cusp region observed during two passes of DMSP F15 on 21 January presented by
Li et al. [2011]. DMSP 15 did not pass through the cusp itself but clipped the dawnward edge of the region
surrounding the cusp on each pass. As a result, it likely missed the region of peak dayside Joule heating
predicted by the simulation. This also has consequences for the AMIE-derived total Joule heating rates
(shown in Figure 3), which ingested DMSP 15 and DMSP 16 observations and likely also underestimated
the contribution of Joule heating in the cusp region and thus the relative strengths of the three peaks in Joule
heating driven by the sheath and leading edge of the solar filament. Between 17:30 and 21:30 UT, typical values
of the downward Poynting fluxes along the DMSP satellite track on the dayside were 30–50mW/m2 but
narrow spikes were observed on top of this background to values >100mW/m2 at ~17:40 UT and just after
20:00 UT. Poynting fluxes dropped to values≤ 20mW/m2 just before 21:00 UT with the rotation of the IMF to a
more purely northward direction.

Figure 7. Joule heating rates, field-aligned currents (Jpar), and electric field (E) in the ionosphere are shown at (1) 18:39 UT
the time of strongest southward IMF in the storm, (2) 18:50 UT during the short southward IMF interval at the leading
edge of the dense filament, (3) 19:25 UT during northward IMF and strong IMF By, and (4) 20:30 UT during comparable
northward IMF and IMF By and reduced solar wind dynamic pressure. During all times, the solar wind speeds were
comparable and over 900 km/s.
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In the MHD+RCM simulation, maximum Joule heating rates reached ~20mW/m2 at 17:40 UT and 36mW/m2 at
20:00 UT, a bit lower than the values observed by DMSP F15. No spikes to 100mW/m2 were produced in the
simulation near the times indicated. By 21:00 UT, Joule heating rates dropped below 20mW/m2 in agreement
with the DMSP Poynting flux estimates and by 22:00 UT below 10mW/m2. Unfortunately, DMSP F15 was not
near the cusp when the simulation predicts the highest Joule heating rates between 18:47 UT and 19:00 UT.
5.2.2. Localized Upwelling of the Neutral Atmosphere Near the Cusps
The 21 January 2005 magnetic storm had an anomalously high level of efficiency for converting energy from
the merging electric field into thermospheric expansion as indicated by orbit-averaged densities measured
by the CHAMP and GRACE satellites over the years 2002–2005 [Lühr et al., 2004; Liu et al., 2005a, 2011].
The merging electric field Em=Vsw BT sin

2 (θ/2), where Vsw is the solar wind velocity, BT= sqrt(By
2 + Bz

2) is the
transverse component of the IMF in GSM coordinates, and θ is the IMF clock angle. Em remains significant even
after the IMF turns northward during the 21 January 2005 storm because the magnitude of the IMF By for a
time is comparable to the IMF Bz. In addition, during this storm, the solar wind dynamic pressure reached
the highest values observed in the 2002–2005 interval, likely amplifying both the precipitation into the
atmosphere as well as the Joule heating in the cusp region.

Both intense Joule heating [cf. Crowley et al., 1996, 2010] and soft electron precipitation [cf. Schlegel et al., 2005;
Liu et al., 2005a; Clemmons et al., 2008; Sadler et al., 2012] are thought to contribute to these dayside
thermospheric density enhancements reported near the cusp region [Lühr et al., 2004; Rother et al., 2007].

Figure 8. The electron flux in the cusp region was observed by the FAST satellite at ~3000 km altitude every 2.2 h during the 21–22 January 2005 magnetic storm.
In addition to the typical region of dense magnetosheath-energy electrons in the cusp, (b–d) there is an additional region of softer energy electrons immediately
equatorward only during northward IMF conditions. It was absent in the southward IMF interval before the (a) solar filament arrival and disappeared rapidly
when the IMF again (e, f ) turned southward. Locally mirroring keV electrons appear in the same region as the soft electrons, more faintly, and only at the
equatorward edge of the cusp.
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Since Joule heating occurs in the E and
F1 regions, low in the thermosphere,
effects transmitted to higher altitudes by
changes in atmospheric scale height are
expected to be weaker than changes
due to direct high-altitude energy inputs
from soft electron precipitation. The
electron precipitation heats the ambient
electrons, increasing their scale height.
The upwelling electrons drag ions along
through the ambipolar electric field
that develops. The momentum in the
upflowing ions is imparted to the neutral
gas, creating a localized expansion of
the high-altitude neutral atmosphere. The
expansion of the thermosphere in the
vicinity of the cusps also contributes to
high-altitude pressure gradients that drive
disturbance thermospheric meridional
wind and transient wind surges.

In addition to an hour-long impulse of
intense Joule heating, an expanded
region of soft electron precipitation is
observed by the FAST satellite during
the northward IMF portion of the solar
filament, shown in Figure 8. The plots
give tens of eV to 30 keV electron fluxes
in three pitch angle ranges that cover
downward, locally mirroring, and upward
directions. The cusp region electron
precipitation at magnetosheath energies
is labeled at the top of each panel.
A region of soft electron precipitation
equatorward of the ionospheric projection
of the cusp develops during the extended
northward IMF interval of the filament

(see Figures 8b–8d). This region of soft electron precipitation does not exist during the southward IMF
conditions in Figure 8a and disappears rapidly as the IMF turns southward again in Figures 8e and 8f. This
same region of soft electron precipitation is visible in DMSP F13, F15, and F16 observations dawnward and
duskward of the FAST observations. This expanded region of soft electron precipitaton ismost likely a key factor
in the extremely efficient expansion of the neutral atmosphere with respect to the strength of the merging
electric field reported by Liu et al. [2011].

5.3. Effects of the Changing Topology of the Magnetotail

A distinctive change in the topology of the magnetotail occurs in the simulation marking the transition from
obliquely to purely northward IMF, warm to cooler superdense plasma sheets, and high to low Joule heating
rates. Figure 9 illustrates this distinctive topological change. In the figure, closed magnetic field lines are red,
open field lines are black, and the IMF is blue. Prior to the first interval beginning at ~19:00 UT, an open
magnetotail formed in the simulation from poleward-of-cusp reconnection under obliquely northward IMF
conditions. By 20:08 UT, densities in the open midtail reached values on the order of 1 cm�3 (green) and
temperatures 2–3 keV (light blue). Closer to Earth, temperatures climbed to 14 keV (red). Figure 9a shows an
example at 20:13 UT of temperature and density panels respectively taken from the MHD+RCM simulation
during this obliquely northward IMF interval. These high temperatures are consistent with the relatively
warmer superdense plasma observed at geosynchronous orbit during this interval.

Figure 9. The changes in the topology of the magnetotail in the
MHD+RCM simulation are shown at (a) 20:13 UT during obliquely north-
ward IMF and (b) 21:41 UT just after the IMF turnedmore purely northward.
Temperatures and densities are in agreement with typical values during
cold dense plasma sheets in the magnetotail. (Note that green in the color
bar is ~ 1 cm�3 and light blue is ~0.1 cm�3). A warmer dense plasma sheet
develops in Figure 9a with peak temperatures beyond 10 RE of 14 keV.
Cooler dense plasma sheets develop in the closedmagnetotail at Figure 9b
reaching values beyond 10 RE of 9 keV. Temperatures in a cold dense
plasma sheet are typically< 1 keV in the midtail region. (The color bar
goes from 13 keV (red) to ~430 eV (dark blue).)
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As the IMF turned more purely northward
at 21:40 UT, the magnetotail in the
simulation closed (meaning both ends of
magnetic field lines were connected to
the Earth) and stretched out to over 150
Earth radii in length. At this same time,
the observed b2i boundary in the dusk-
midnight local time sector (Figure 3j),
which marks the transition from dipolar
to stretched magnetic field lines [Newell
et al., 1998], moved to its lowest latitude
position. In the simulation, plasma densities
(shown, for example, in Figure 9b at
21:41 UT) remained near 1 cm�3 (green) in
the midtail region. However, temperatures
cooled. By 22:20 UT (not shown), the
magnetotail decreased in length to~60 RE,
magnetotail stretching decreased, and
the LANL satellites reentered the plasma
sheet to again observe a unusually dense
but cooler population. In the simulation,
densities in the midtail region, reached
1–10 cm�3 (green to yellow) and
temperatures cooled even further. These
densities and temperatures are consistent
with typical observed values of 1 cm�3

and< 1 keV (1.16 × 107 K) in this region
[cf. Terasawa et al., 1997].

5.4. Development of the Cold Dense
Plasma Sheet

The MHD+RCM simulation is compared
with observations to explore the
development of the CDPS and its local
time characteristics. This is particularly
important because the dense populations

of the LLBL are on closed field lines and thus form part of the dayside plasma sheet. The compression of the
magnetosphere places dense LLBL populations at the nose of the magnetosphere and along the flanks into
close proximity with the inner magnetosphere introducing the potential for changes in the plasma wave
environment or the ring current source populations. To validate the simulation, Figure 10 compares the
density and temperature (black lines) along three LANL satellite paths in the MHD+RCM simulation to observed
densities and temperatures (blue dots). In general, there is close agreement during the interval of primary
interest from 17:00 UT on 21 January to 00:40 UT on 22 January.

The simulation allows us to place the LANL and TC-1 satellite observations into a global context that includes
the relationship to important plasma boundaries and regions. To orient the reader, Figure 11 shows a typical
plot of log plasma number density in the ZGSM = 0 plane from the simulation with these boundaries and
regions identified. Magnetosheath/solar wind plasma captured as a result of double poleward-of-cusp
reconnection is seen as a narrow region of high-density plasma within the magnetopause near noon. This
plasma subsequently populates the much thicker boundary layers at the dawn and dusk flanks. The CDPS fills
from the flanks inward on the nightside. On the dayside, a pseudo plasmaspheric drainage plume is seen
in the simulation as convection pulls out plasma from the model inner boundary at L~ 2.5 RE. Drainage
plumes are regions of cold plasma that develop as enhanced convection strips away the outer layers of the
plasmasphere and sweeps them sunward (cf. review by Lemaire [2000], observations of global structure by

Figure 10. Log density (cm�3) and log temperatures (eV) from the
MHD+RCM simulation are given along each of three LANL satellite orbit
tracks (black lines) compared to the observed densities and temperatures
at these same locations (blue dots).

Journal of Geophysical Research: Space Physics 10.1002/2013JA019748

KOZYRA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5419



Goldstein et al. [2004], and discussion of
characteristics at geosynchronous orbit
by Borovsky and Denton [2008]). As noted
by Borovsky et al. [2008], this process in
the MHD model is insufficient to create a
realistic plasmasphere, which requires
field-aligned ionospheric outflow at all
latitudes into the corotating inner
magnetosphere. However, it does
provide information on the location of
plasmaspheric structures that are driven
by convection.

In Figure 12, cross sections of log N from
the simulation are given at the top with
the locations of LANL satellites projected
into the equatorial plane indicated by
colored dots. The particular color
associated with each satellite appears in
the legend on the right side of the figure.
Below these cross sections, LANL densities,
temperatures, and the associated
magnetic local times are plotted in four

different magnetic local time sectors. The observations are color coded to identify the satellite providing
them. In each of these magnetic local time sectors, the times for which cross sections from the simulation are
displayed above are marked by vertical dashed lines.

In the dayside local time sector, both LANL 1994-084 (purple) and LANL 097A (orange) are in themagnetosheath
observing densities near 100 cm�3 and temperature ~ 1–2 keV until just after 00 UT on 22 January. As the
solar wind dynamic pressure decreases at the trailing edge of the solar filament, the LANL satellites observe
the magnetosheath, then the LLBL, and finally the dayside plasma sheet as the magnetosphere expands
outward sweeping over them. After 02 UT, the IMF has rotated intermittently southward again and the
dayside plasma sheet returns to values near and below 1 cm�3 and temperatures of 5–10 keV.

In the dawn sector (03–09 h MLT), LANL-097A (orange) sees the temperature rise and the density drop
abruptly at the shock arrival at ~17:11 UT and then again at the time of the filament arrival near 18:45 UT.
These are likely brief excursions into the lobes as indicated by the low densities and high temperatures
relative to the plasma sheet. As LANL-097A (orange) approaches the dawn flank and enters the LLBL at 19:00 UT,
the density rises to 20–30 cm�3 and the temperature reaches 6–7 keV. LANL-097A continues into the much
thinner prenoon LLBL by 22:00 UT where densities fluctuate from tens to 100 cm�3. The temperature drops
from 6–7 keV to 1–2 keV as 097A enters the magnetosheath near ~23 UT and ~9 MLT. At this same time
(just after 22:00 UT), LANL-02A (green) is just entering the dawn sector from the postmidnight magnetotail.
At this location, densities rise from 2 cm�3 to 5 cm�3 and temperatures cool to 4–5 keV. After 02:00 UT, as the
IMF turns southward, the plasma sheet densities observed by LANL-02A drop below 2 cm�3. At the same time,
LANL-01A (blue) is closer to midnight in the dawn sector and sees similar densities but higher temperatures
more typical of the nightside magnetotail.

In the dusk sector (15–21 hMLT), LANL 1990-095 (red) ismostly in themagnetosheath until just before 20:00 UT.
In agreement with LANL-097A, magnetosheath densities reach 100 cm�3 and temperatures are 1–2 keV. At
20:00 UT, 095 enters the LLBL and observes densities that fluctuate from tens of cm�3 up to magnetosheath
values, then enters the duskside CDPS with densities of 3–6 cm�3 and temperatures of 4–5 keV. Near 02:00 UT,
LANL 1994-084 (purple) observes the drop in densities to< 2 cm�3 and increase in temperature back to more
normal plasma sheet values on the duskside after the return of southward IMF.

In the night sector (21–03 h MLT), LANL-02A (green) is on the postmidnight side of the magnetotail, while
LANL-01A (blue) and LANL 1990-095 (red) are on the premidnight side. As the CDPS forms, the densities
increase more rapidly on the premidnight side in agreement with the simulation. Densities at LANL-01A at

Figure 11. Identification of plasma populations is shown in a typical XY
cross section of log N from the MHD+RCM simulation to aid in placing
satellite observations into global context.
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premidnight increase to superdense values (>2 cm�3) near 20 UT, drop to low values as the satellite enters
the lobes at 21:40 UT, and then remain at superdense values until 02:00 UT when the satellite moves into
the dawn MLT sector. LANL 1990-095 in the premidnight sector also sees the cold superdense plasma sheet
and then the recovery of the density to more typical values at 02 UT. The temperature of the WDPS prior
to 21:40 UT under obliquely northward IMF has a tendency to be warmer than that of the CDPS under more
due northward IMF conditions.

The Double Star TC-1 satellite was also passing through the magnetosheath, LLBL, and plasma sheet during
this time. TC-1 was launched into an equatorial elliptical 1.09 × 13.4 RE orbit at 28.5° inclination in 2004.
Figure 13 is a summary plot of TC-1 observations. At the top of the figure, equatorial plane cross sections of

Figure 12. Characterizations of the density and temperature of the cold dense plasma sheet and its evolution at all
local times are given by the LANL geosynchronous satellites. The cross sections in log N at the top from the MHD+RCM
simulation place the positions of the LANL satellites into the global context. The satellites are identified in these cross
sections and in the plots of density and temperature by the color coding at the upper right.
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log N from the simulation are used to place the location of TC-1 (blue dot) into global context. Since
TC-1 orbits relatively close to the equatorial plane, we map its position onto the Z= 0 plane in the
simulation for ease in comparison to LANL observations discussed previously. The times of the cross
sections are indicated by dashed lines on the TC-1 summary plots labeled a–d for 21 January 15:00–24:00 UT
(left column) and labeled e–g for 22 January 00:00–06:00 UT (right column). The top panel in each column
displays ion energy fluxes (keVcm�2 s�1 sr�1 keV�1) in the color bar versus energy and time in UT provided by
the Hot Ion Analyzer (HIA) instrument on TC-1. HIA is an ion spectrometer that measures the 3-D distributions
of the ions in the energy range from 5eV/q to 32keV/q without mass discrimination [Reme et al., 2005]. A time
of a data gap near perigee is indicated late on 21 January 2005. The second panel in both columns gives
the ion density integrated over this full energy range. In the right column, a panel showing the number
density contributed by ions with energy below 500 eV is also included. The next panel in both columns
gives the three components of the H+ velocity observed by TC-1. The final panel gives the dynamic spectra
of wave magnetic fields (color bar) plotted as frequency versus time from 10 Hz to 4 kHz observed
by the Spatio-Temporal Analysis of Field Fluctuations and the Digital Wave-Processing experiments
[cf. Cornilleau-Wehrlin et al., 2005].

Figure 13. Observations are displayed of the entry of magnetosheath plasma, the dawn and dusk cold dense plasma sheet, and the drainage plume by
Double Star TC-1 on 21 January from 15:00 to 24:00 UT (left column) and 22 January from 00:00 to 06:00 UT (right column). The (a–g) cross sections in
log N at the top place the position of TC-1 (blue dot) into the global context provided by the MHD+ RCM simulation. These times are indicated by vertical
lines on the TC-1 summary plots. The top panel gives energy flux (JE) in keV/(sec cm2 sr keV) over the range of 5 eV/q–32 keV/q. The second panel gives
density integrated over this same energy range. In the right column, an additional panel is given showing the density integrated only below 500 eV. The next
panel in each column gives the three components of H+ velocity. The final panel gives the dynamic spectra of wave magnetic fields (color bar) plotted as
frequency versus time from 10Hz to 4 kHz.
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Double Star TC-1 observed densities in the magnetosheath just after the shock (at ~17:10 UT) of 40 cm�3. When
the solar filament arrived near 18:45 UT and compressed the magnetosphere, TC-1 entered the solar wind. At
19:05 UT (cross section a), TC-1 reentered at 8.54 RE to find a hotter, denser magnetosheath. Both simulations
(with andwithout the RCM) show the bow shock nose at a little under 8.0 RE at this time. In agreement with LANL
satellites, densities at TC-1 in the magnetosheath increased to ~100 cm�3 after the arrival of the solar filament
ultimately reaching 130 cm�3 [Dandouras et al., 2009]. Plasma flows in the magnetosheath were~ 650 km/s.

At 20:05 UT (cross section b), TC-1 observed a region of magnetosheath-like plasma but flowing at speeds
approaching magnetospheric values consistent with magnetosheath capture by double lobe reconnection.
This is the dayside LLBL. In agreement with LANL observations, ion densities in the LLBL fluctuated between
10 and 100 cm�3. At 21:35 UT (cross section c), TC-1 crossed through the duskside CDPS and observed
densities of 10–20 cm�3 at geosynchronous orbit in agreement with LANL satellites, dropping to 3.5–10 cm�3

on the nightside at smaller radial distances. At 22:35 UT (cross section d), TC-1 moved to radial distances
near and inside the inner boundary of the MHD simulation on the nightside and found energy-dispersed ions
with lower energies appearing at lower invariant latitudes.

Just after 00 UT on 22 January (cross section e), TC-1 reentered the model domain on the dawnside to observe
energy-banded ions extending from 10 eV to 10 keV clearly separated in energy from the ring current ions,
which start at 20 keV. Six energy bands were observed in this energy range. These ions appear to be a
higher-altitude signature of an entirely new phenomenon, first reported in association with the 29–31
October 2003 superstorm in FAST and DMSP satellite data [Cattell et al., 2004; Kozyra et al., 2004; Huang
et al., 2005b; Colpitts et al., 2012].

Though TC-1 cannot resolve ion species, observations on FAST demonstrate that H+, O+, and He+ in the bands
are at constant energy not constant velocity, so they cannot be understood in terms of velocity dispersion
effects alone. When these warm ion bands are seen on FAST, they are coincident with VLF electromagnetic
emissions that are observed in discrete frequency bands between 75 and 2000Hz separated by 60–200Hz
[Colpitts et al., 2012]. As these authors point out, the close coincidence between the frequency-banded
waves and the energy-banded ions suggests that the ions may be the source of the waves. If the waves are
generated at harmonics of the proton gyrofrequency, the inferred source region would be ~4000 km, which
is above the location of FASTand below the altitude of the TC-1. TC-1 at this time is 0.02 RE below the equatorial
plane at a radial distance of ~2.7 RE (dipole L~3.5). On 21 January, these frequency-banded emissions were
first observed by DEMETER [Parrot et al., 2006] near 20:10 UT at altitude~710 km, MLT~9.7 h, and L~2.9-3.7
(IL~54–58.7). This time coincides with the arrival of the cold dense plasma sheet in the inner magnetosphere.
On TC-1, plasma waves above 1 kHz were observed at the location of the energy-banded ions on the dawnside
near 00 UT on 22 January but no similar wave signature was seen earlier on the duskside in association with
the energy-dispersed ions near 22:35 UT on 21 January providing evidence that there are differences either in
the mechanisms that produced these two different examples of energy-banded ions or in their interaction
with the ambient plasma and wave environment at the two locations.

The warm banded ions encountered by TC-1 on the dawnside so far have been observed only during strong
magnetic storms. In fact, they have been seen in every intense magnetic storm observed by the FAST satellite.
Colpitts et al. [2012] suggest that the presence of these ions and associated VLF emissions implies a change in
the geospace environment under extreme driving. Why these ions are present during the moderate 21–22
January 2005 storm is an interesting open question. Their appearance is consistent with the variety of other
unusual phenomena typical of more extreme events that were also generated during this moderate storm.

At 00:25 UT on 22 January, a burst of low-energy ions appeared with energy and intensity increasing until
01:15 and then decreasing again. At geosynchronous orbit, LANL satellites observe a layer of ionospheric
ions with similar characteristics adjacent to, and just inside, the magnetopause as the magnetosphere
expands outward. Both LANL satellites and TC-1 then enter a region of plasmaspheric material associated
with the drainage plume. Though no plasmaspheric model is included in the SWMF configuration, the
location of the observed plasmaspheric material is consistent with the location of a pseudo drainage plume
in the simulation that forms as plasma at the inner boundary of the MHD model is drawn out by plasma
pressure gradients and participates in convection. TC-1 continues to move outward and then reencounters
the magnetosheath plasma. At 03 UT (cross section g), TC-1 is moving in and out of the magnetosheath
while traveling along the magnetopause in the simulation.
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To summarize, LANL satellites and TC-1witness the formation of theWDPS and CDPS and are able to characterize
the associated changes in density and temperature at all local times. These satellites also confirmed the
rapid return of the plasma sheet to hot, low-density conditions when southward IMF returned. Observations
of the plasma sheet, LLBL, and magnetosheath agree well between LANL and TC-1 and are consistent
with the simulation. Densities in the magnetosheath during the filament passage are near 100 cm�3 and
temperatures are relatively hot for this region reaching 2 keV. The plasma sheet fills from the flanks inward.
On the nightside in the magnetotail, the WDPS and CDPS reach densities of 5–6 cm�3. In a narrow region on
the dayside just inside themagnetopause and in broader regions on the duskside and dawnside,magnetospheric
densities reach from tens of cm�3 to near magnetosheath values (~100 cm�3). High densities (tens of cm�3)
and low temperatures (2–5 keV) on the dawn and dusk flanks as well as on the dayside are consistent
with statistical studies of the dayside LLBL [cf. Hasegawa et al., 2004]. Since the LLBL is closed during the
double high-latitude reconnection that forms the WDPS/CDPS, these cold high-density regions are part of
the dayside plasma sheet.

In the MHD+RCM simulation, the geosynchronous plasma sheet in a cold dense state is approximately a
factor 2–5 times denser at dawn and dusk than at midnight. This can be compared to the factor of ~ 6
increase from the nightside to the dayside in observed densities at larger radial distances by the Time History
of Events and Macroscale Interactions during Substorms satellites during a similar event [Øieroset et al., 2008].
It is also similar to the evening and morning CDPS peaks seen during superstorms in the statistical study
of Liemohn et al. [2008]. The width of the subsolar LLBL an hour after the IMF turned northward is ~2 RE in
the simulation. This can be compared to other observed events, which had thicknesses of 0.9 RE in the
subsolar region observed 25min after northward turning [Øieroset et al., 2008] and 5 RE inside the
magnetopause on the dawn flank [Sauvaud et al., 1997]. The LLBL is observed to increase in thickness during
northward IMF conditions.

5.5. Magnetotail Stretching

Despite the lower temperatures of the CDPS, its high densities at dawn and dusk are sufficient to stretch out
the magnetic field lines that bring plasma into the nightside plasma sheet from both flanks. This stretching
results from diamagnetic effects and is a surprising feature of the 21 January event. It is not known how
frequently CDPS intervals achieve densities large enough to produce this effect.

The underlying physics of the diamagnetic field depletion can be described from both microscopic and
macroscopic perspectives [cf. Lühr et al., 2003]. In the microscopic view, charged particles gyrating about
magnetic field lines generate a magnetic moment opposite in direction to the background magnetic field.
The strength of an individual particle’s magnetic moment varies directly with its perpendicular energy and
inversely with the background magnetic field magnitude. Thus, for a cold plasma, the magnetic moment of
the individual particles can be small. The diamagnetic effect requires collective effects in the plasma due to
gradients in density, temperature, or magnetic field strength which generate current loops [Engelhardt, 2005].
The strength of the current in the loops varies with the density and temperature of the plasma. Since the
plasma is confined close to the equatorial plane, where the field is largely in the Bz direction, the magnetic field
depletion reduces the Bz component relative to other components stretching out the magnetic field line.

In the macroscopic view represented in MHD, pressure gradients in the plasma produce currents that are
perpendicular to both the pressure gradients and to the background magnetic field. These currents reduce
the background magnetic field in the high-pressure regions of the plasma. Of course, if the temperature is
constant through a region, the pressure gradients correspond to plasma density gradients. The final view
of diamagnetism given by Lühr et al. [2003] considers quasi-stationary plasma in the limit where magnetic
tension can be neglected. In this case, the sum of magnetic and plasma pressure is approximately constant.
If the plasma pressure increases, the magnetic pressure must decrease. The increase in plasma pressure can
be achieved either by an increase in density (as for a CDPS) or in temperature (as for a typical hot tenuous
plasma sheet during southward IMF conditions).

The diamagnetic effect was graphically demonstrated during the ion release experiments on the Active
Magnetospheric Particle Tracer Explorers Ion Release Module mission. The magnetic field within the cloud of
plasma generated by the chemical release vanished and only reappeared when the high densities in the
cloud dissipated [e.g., Lühr et al., 1986a, 1986b].
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The MHD+RCM simulation predicts strong magnetotail stretching for more than 6 h associated with the
WDPS/CDPS despite the low geomagnetic activity and northward IMF conditions. Figure 14b shows XZ cross
sections of the magnetotail with color-coded magnetic field stretching angle and projected magnetic field
lines superimposed to give the reader a feel for how the changes in the magnetic field configuration relate
to the distribution of stretching angles. The stretching angle is given by θstretch = arctan(Bz/(Bx

2 + By
2)1/2)

with the field components in GSM coordinates [cf. Borovsky and Denton, 2010]. The cross sections displayed
are taken at five different times during the northward IMF interval associated with the solar filament, including
the peak of the dynamic pressure, the time of declining pressure following the peak, the interval of theWDPS,

Figure 14. XZ cross sections of the magnetic field stretching angle at Y=0 are displayed from (a) northward and southward
IMF steady state reference models and (b) the time accurate MHD+RCM simulation of the 21–22 January 2005 magnetic
storm. Only positive stretching angles associated with closed magnetic field lines are displayed. Dipolar field lines have
stretching angles near 90° in the plane of symmetry through the equatorial region. The stretching angle decreases moving
along the field line away from the equatorial region. In the stretched field of the various storm phases, the stretching angle
decreases more steeply away from the 90° plane as compared to themuch slower decrease along dipolar field lines (see, for
example, the northward reference model in Figure 14a). The variations in the stretching angle during the storm at a range
of magnetotail locations indicated by the dashed vertical lines are shown in Figure 15.
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the lobe encounter, and the CDPS. The sixth cross section is taken from the interval of intermittent southward
IMF late in the storm. For comparison purposes, Figure 14a shows the stretching angle from BATS-R-US+RCM
steady state reference models of the magnetosphere under GSM northward (IMF Bz=+5nT) and southward
(IMF Bz=�5 nT) IMF conditions, nominal solar wind density (5 cm�3) and speed (400 km/s) and zero dipole tilt.

For a dipole field, the stretching angle is 90° in the magnetic equator, decreasing with latitude away from
the equator. Such a condition is also seen in both reference models in Figure 14a. For a field stretched by
diamagnetic currents in the equatorial region, the stretching angle is still 90° near the apex of the field line, but
the decrease with latitude away from that point is more severe. Such strong stretching is evident in the very low
values of the stretching angle away from the field line apex in all of the intervals illustrated in Figure 14b.

In the reference models which contain no dipole tilt, the equatorial plane is aligned with the Z= 0 plane. In
the inner regions, the magnetic field lines are quite dipolar in both cases. In contrast, on 21–22 January 2005,
the plane of 90° stretching angle becomes significantly tilted with respect to the Z=0 plane. Due to the

Figure 15. The variations in themagnetic field stretching angle with Z at selected locations along the X axis as a function of
time are displayed from the BATS-R-US+ RCM simulation of the 21–22 January 2005 magnetic storm in the left column. The
middle and right columns give the stretching angle from reference BATS-R-US+ RCM of steady state southward and
northward IMF configurations of the magnetic field to show an idealized variation of the stretching angle along the Z-axis
under steady state conditions and zero dipole tilt for comparison. Only positive stretching angles associated with closed
magnetic field lines are displayed. Magnetotail stretching angles near 90° in the equatorial plane indicate a dipolar
configuration; while those near 0° a highly stretched magnetotail configuration.
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dipole tilt and the effects of solar wind conditions, the
magnetic field configuration diverges significantly from a
dipole off the equatorial plane.

Figure 15 shows the variation in themagnetic field stretching
angle with time at a range of locations (X=�4.0, �6.7, �8.0,
�10.0, �12.0, and �14.0) in the magnetotail at midnight
MLT. At each of these locations (marked by dotted lines
in Figure 14), the stretching angle is extracted along the
vertical from Z= 5 RE to�10 RE in order to identify the tilted
equatorial plane, the maximum value of the stretching
angle which occurs in this plane, and the decrease in the
stretching angle away from the equator. These 1-D plots
are placed side by side in Figure 15 to create a time history
of the changes in the field line configuration. The fact that
the maximum value of the stretching angle is less than 90°
in these panels is indicative of a “guide field” component,
i.e., a nonzero azimuthal field component in the region
where the radial component reverses. In these situations,
there is no place along the field line where the field lies
entirely in the GSM Z direction. Though some degree of
magnetotail stretching is evident throughout most of the
21–22 January event despite the dominantly northward IMF
conditions, the largest deviations from a dipolar configuration
deep within the inner magnetosphere at geosynchronous
orbit are seen during two intervals—the first containing
the largest dynamic pressures of the solar filament
(between 19:10 and 20:00 UT) and the second the increase
in stretching as the magnetotail transitions from open to
closed driving the change fromWDPS to CDPS states of the
plasma sheet (between 21:30 and 22:10 UT).

Time histories of plasma density, temperature, and pressure
were created in the same manner as described above
and compared to the magnetic field stretching angle at
geosynchronous orbit in Figure 16 to explore the diamagnetic
effects of the WDPS/CDPS. The high plasma sheet densities
of the WDPS/CDPS are seen from 20:00 UT to ~03:00 UT the
next day consistent with observations by the LANL satellites.
Lower densities were found at the time of the solar filament
arrival before the WDPS formed and densities dropped
again following the CDPS as the IMF turned intermittently
southward. High plasma sheet temperatures were associated
with the peak in dynamic pressure of the solar filament but
dropped to much lower values in the WDPS/CDPS interval
(with slightly warmer values during theWDPS than the CDPS).
Temperatures began to increase again with the return of
southward IMF. The plasma pressures (fourth panel) are
directly related to the diamagnetic changes observed in
the magnetic field. The large plasma pressures (minimum
in the stretching angle) during the solar filament arrival at
~19:10–20:00 UT resulted from the high temperatures
despite the low densities in the plasma sheet. However, the
cold temperatures and high densities of theWDPS/CDPS also
resulted in significant plasma sheet pressures contributing

Figure 16. The time evolution of magnetic field
stretching angle at midnight MLT, X =�6.7 RE,
and Z spanning ±5RE is reproduce here along with
corresponding plots of the plasma sheet density,
temperature, and pressure generated in the same
way. As in Figure 3, vertical dashed lines labeled SA
and SB mark the initial shock arrival and the leading
edge of the high dynamic pressure associated with
the solar filament material. The time intervals of
the WDPS/CDPS and of the return of intermittent
southward IMF are labeled and delineated by vertical
dashed lines. The high densities and low temperatures
of theWDPS/CDPS appear in sharp contrast to the low
densities and high temperatures of the plasma sheet
in response to the high dynamic pressures at the
leading edge of the solar filament material. However,
both intervals produce high dynamic pressures in the
plasma sheet and corresponding decreases in the
magnetic field stretching angle particularly evident in
the intervals 19:10–20:00 UT and 21:30–22:00 UT.
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to changes in the magnetic field configuration. During this time, significant stretching of the geosynchronous
equatorial magnetic field appeared along with large deviations from a typical northward IMF configuration
at locations off the equatorial plane.

In comparison with these results, Du et al. [2008] reported two intervals of strong magnetotail stretching
in Geotail observations between 18:51 UT and 20:10 UT, both times within the stretching interval in the
simulation associated with the highest dynamic pressures in the solar filament. They roughly identify the first
interval of magnetotail stretching with energy storage and the second interval with the release of this stored
energy during northward IMF conditions, though they give no specific mechanisms that would accomplish
this storage and release scenario.

A recent study of 63 superdense plasma sheet intervals at geosynchronous orbit demonstrated a close
correspondence between their appearance during corotating interaction regions as observed by the LANL
satellites and increases in magnetotail stretching to a superposed average of 37° observed by five GOES
satellites [Borovsky and Denton, 2010]. As was demonstrated above, the portion of the field line being
sampled depends on the tilt of the magnetic equatorial plane in response to solar wind conditions as well as
seasonal variations in the dipole tilt angle. Since the geosynchronous orbit is tilted relative to the magnetic
equatorial plane, GOES samples the magnetic field as much as 3 RE below the Z= 0 plane on the nightside.
The decrease in the stretching angle with distance above or below the equatorial plane evident in both
the 21–22 January event and the reference northward and southward IMF cases is consistent with the
relatively small stretching angles reported above at geosynchronous orbit, which were compared to typical
stretching angles in this region. The superdense ion plasma sheets had superposed average density of
~1.17 cm�3 and temperature of 8–10 keV. The reader is reminded that the superdense plasma sheets studied
by Borovsky and Denton [2010] are different than the cold dense plasma sheets (CDPSs) that occur during
northward IMF conditions, which are the subject of the present study. The close association between the
superdense plasma sheet intervals and strong magnetotail stretching implies that diamagnetic effects
associated with the high ion pressures were responsible. The strong stretching during the moderate corotating
interaction region-driven storms considered by Borovsky and Denton [2010] made on average a 25%
contribution to the Dst index. The similarity in the stretching between the superdense plasma sheets and
the stretching associated with the WDPS/CDPS in the present study implies that magnetotail currents may
also contribute to a delay in the recovery of the SYM-H index during 21–22 January.

6. Connected Effects Throughout Geospace

Observational evidence that the strong magnetotail stretching predicted by the simulation actually occurred
can be found in the increased intensity and the persistent expansion of particle precipitation regions during
the same time. Evidence for the increased disruption in ring current shielding during the filament impact
and the strong Joule heating that followed in the simulation is provided by the observed unusual
electrodynamics of the equatorial ionosphere. Consistency and timing arguments that combine simulation
results with the observations identify key coupling processes described below.

6.1. Enhanced Precipitation

As the solar filament arrived at the magnetopause, the low-latitude edge of the auroral oval expanded
equatorward to ~55° MLATand remained expanded for the 6 h of the solar filament passage under northward
IMF conditions. Additionally, the peak in ring current precipitation continued to move equatorward and the
fluxes to intensify well into this same northward IMF interval.

In the next two sections, we examine how variations in the diffuse aurora and the large-scale 30–2500 keV
proton precipitation zones are related to intervals of high dynamic pressure and strong magnetotail
stretching on 21 January. As seen in Figure 15, there were two minima in magnetotail stretching angle—one
near 19:00 UT at the time of maximum solar wind dynamic pressure and the other after 21:00 UT during
the transition between the WDPS open and the CDPS closed magnetotail configurations. By this second
interval of magnetotail stretching, the solar wind dynamic pressure had decreased significantly from its peak
value, which argues against magnetospheric compression as the dominant source of this later interval of
strong magnetotail stretching. During both intervals, the IMF was largely northward. The question arises
of whether diamagnetic stretching by the WDPS/CDPS during northward IMF plays a role in the behavior of
large-scale precipitation regions.

Journal of Geophysical Research: Space Physics 10.1002/2013JA019748

KOZYRA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5428



When the magnetotail fields become stretched, nonadiabatic particle motions are important. Changes to
the first adiabatic invariant, μ, result when the minimum magnetic field line curvature near the equatorial
plane becomes comparable to the particle gyroradius. This is called field line curvature (FLC) scattering
[Birmingham, 1984; Delcourt et al., 1994; Anderson et al., 1997; Young et al., 2002, 2008]. The earthward extent
of FLC scattering moves to lower radial distances for increasing proton energy, increasing magnetic activity
given by Kp, and increasing ionmass at a fixed energy [Anderson et al., 1997]. The transition between isotropic
and anisotropic proton precipitation observed on satellites in low-Earth orbit on the nightside has been
demonstrated to define the earthward extent of large-scale FLC scattering regions [cf. Sergeev et al., 1993].

It is generally accepted that the equatorward edge of the proton diffuse aurora marks the transition between
stretched and dipolar magnetic field lines. Scattering of electrons by this same process contributes to the
diffuse electron aurora [Sergeev and Malkov, 1988] but, in addition, electron interactions with plasma waves
at high altitudes can dominate the scattering over certain energy ranges and local time sectors. These wave-
electron interactions can also be modified by magnetotail stretching in ways that enhance precipitation in
the presence of stretched magnetic field lines [Ni et al., 2011]. As a result, the location in magnetic latitude
of the equatorward edges of both the electron and proton auroral ovals is thought to provide visual
indicators of the degree of magnetotail stretching [Weiss et al., 1997].

Analogously, large zones of ion precipitation at ring current and radiation belt energies (>30 keV), which move
inward and increase in intensity during magnetic activity, are attributed to FLC scattering [Sergeev et al., 1983,
1997; Newell et al., 1998]. These large scale regions are separated mostly by energy range from the proton
auroral precipitation also thought to result from FLC scattering. However, the lower energy auroral protons
scatter farther tailward in the stretched fields of the central plasma sheet. FLC scattering of protons and oxygen
ions at ring current and radiation belt energies continues to much lower L values, and thus, precipitation zones
move deeper into the midlatitude region equatorward of the auroral oval [cf. Anderson et al., 1997]. Integrated
global precipitation created by FLC scattering is thought to be an important loss for the ring current during
magnetic storms [Kozyra et al., 1998; Ebihara et al., 2011] but has not yet been observationally characterizedwell
partly due to difficulties in separating auroral from ring current precipitation.

Figure 17. These images of the 00–06 MLT sector from the IMAGE SI13 channel show that the equatorward edge of the
auroral oval expanded to ~55° MLAT in association with the arrival of the high dynamic pressure of the solar filament
and not with the strong southward IMF in the ICME sheath. The equatorward edge of both the proton and electron auroral
ovals remained at these low MLATs for 6 h as the solar filament passed by the Earth.
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6.1.1. Diffuse Aurora
On 21 January, the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite observed the
auroral oval expand rapidly equatorward as the leading edge of the solar filament struck the magnetosphere.
Figure 17 shows images of the auroral oval from the SI13 channel of the far ultraviolet (FUV) instrument in the
Southern Hemisphere dawn sector. Figures 17a–17c were taken prior to the arrival of the solar filament during
the strongest IMF Bz of the storm. The equatorward edge of the auroral zone was located at ~60° MLAT under
these conditions. The imaging sequence was terminating so only the lowest latitude edge of the auroral oval
was captured between 18:44 and 19:03 UT. These partial images contribute important information on the
timing of the auroral oval expansion. Figure 17d was taken during a short interval of strong northward IMF
prior to the filament arrival. The equatorward edge was still at ~60° MLAT. Figure 17e was taken just after the
arrival of the solar filament during a short interval of southward IMFat its leading edge. Immediately, the lowest
latitude edge of the diffuse aurora expanded equatorward to 55°. During Figure 17f, dynamic pressures were
near peak values but the IMF had turned weakly northward. However, the equatorward edge remained at 55°.
These observations suggest that the initial expansion of the auroral oval was due to the high dynamic pressure
in the solar filament, which compressed the magnetotail into a strongly stretched configuration. Over the
course of the next 6 h and despite the change to northward IMF conditions and the decrease in dynamic
pressure, the equatorward edge remained at these lowmagnetic latitudes. During this time, auroral activity was
weak as indicated by the AL index in Figure 3.

Figure 18 compares the auroral ovals observed by the IMAGE satellite in UV emissions produced by precipitating
auroral electrons (top) and auroral protons (bottom) at (a) the time of strongest southward IMF during the

Figure 18. Images of the expanded auroral oval observed by the FUV (top) SI-13 imager and the (bottom) SI-12 imager on the
IMAGE satellite are shown. On the left side is an image taken on 21 January 2005 at 18:42 UT during southward IMF in the
sheath region of the ICME. On the right is an image on 22 January 2005 at 00:41:04 UT after the IMF had been dominantly
northward formore than 5h. The cusp spot is a signature of northward IMF conditions. For comparison, the yellow dashed line
gives the equatorward edge of the diffuse auroral oval during the storm-time peak in southward IMF at 18:36 UT.
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storm main phase and (b) 6 h later during strongly northward IMF conditions. During this long interval of
northward IMF, the equatorward edge of the diffuse auroral oval remained expanded to MLAT~ 55°.

To separate out the effects of the high solar wind dynamic pressure from those of the CDPS in producing the
magnetotail stretching, Figure 19 examines the changes in the equatorward boundary of the electron fluxes
in the Global Ultraviolet Imager (GUVI) images during consecutive passes through the diffuse auroral region
near midnight. In Figure 19, the dusk-to-midnight local time sector is extracted from electron flux maps.
These are then laid side by side so the location of the near-midnight equatorward boundary can be easily
compared between images. The edge of strongest (red) electron fluxes moves to the lowest magnetic
latitudes during passes centered at 19:04 UT and 21:30 UT. The first excursion of the electron fluxes to their
lowest MLAT extent coincides with the arrival of the solar filament and the associated peak in solar wind
dynamic pressure. The second coincides with the appearance of the WDPS/CDPS at geosynchronous orbit
after the solar wind dynamic pressure had already significantly decreased. This provides evidence that both
the high dynamic pressures in the solar wind and then later the WDPS/CDPS contributed to the magnetotail
stretching and the equatorward movements of the diffuse aurora.
6.1.2. High-Energy Proton Precipitation Zones
Figure 20-1 presents 3 h global maps of 30–2500 keV proton precipitation during the 21–22 January 2005
magnetic storm. The time at the top of each map is the center of the time interval. These global proton
precipitationmaps were generated by combining observations from theMedium Energy Proton and Electron
Detectors (MEPED) on board three NOAA POES satellites, NOAA-15, 16, and 17. The NOAA POES satellites are
in Sun-synchronous circular orbits at ~850 km altitude. Figure 20-2 illustrates the invariant latitudes and
magnetic local times covered by each of the satellites in January 2005. The global maps combine observations
from four of the MEPED proton energy channels: 30–80 keV, 80–240 keV, 240–800 keV, and 800–2500 keV
measuring at 10° to the vertical which is well within the loss cone above 50° IL. The observations were sorted
into 1° corrected magnetic latitude (CML) and 8 min magnetic local time (MLT) bins. Interpolations were
used to fill in missing MLT data within each CML interval. More details about the techniques used to construct
the global maps are given in Fang et al. [2007].

Figure 19. The 18–24 h local time sector is extracted fromGUVImaps of the average flux of precipitating electrons tomore easily
compare the movement of the equatorward boundary of the auroral oval over this interval. The edge of strongest electron
fluxes moves to the lowest magnetic latitudes during the two intervals of peak magnetotail stretching (1) at 19:04 UT during
the peak dynamic pressures of the solar filament material and (2) at 21:32 when the IMF rotated more purely northward, the
magnetotail closed stretching out to> 150 RE and the nightside LANL geosynchronous satellites entered themagnetotail lobe.
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Figure 20-1a shows proton precipitation prior to the start of the magnetic storm from 13:30 to 16:30 UT.
The peak of the ring current proton precipitation in the map is located at ~64° MLAT (dipole L value ~ 5.2) and
at ~22 h MLT. This agrees well with the location of the ring current pressure peak in the MHD+RCM
simulation prior to the storm onset. Figure 20-1b covers the time interval 16:30–19:30 UT including the shock
hit, storm onset, the ICME sheath passage, and the interval of peak dynamic pressure in the leading portion
of the solar filament. The total energy flux of precipitating protons is 45 GW. There are two spatial peaks in
the subauroral proton precipitation both within the interval 55°–63° MLAT (dipole L~ 3.0–4.9). Figure 20-1c
covers 19:30–22:30 UT which includes both the warm and cooler superdense plasma sheets. Despite the
northward IMF conditions at this time, the peak of the proton precipitation moves deeper into the inner
magnetosphere between Figures 20-1b and 20-1c reaching an equatorward extent of at least 50° MLAT.

This same inwardmotion is also found by following the location of peaks in proton precipitation on individual
orbits of NOAA POES. The most equatorward penetration of precipitating protons was observed on NOAA-17

Figure 20. (a) Three hour maps of 30–2500 keV proton precipitation observed by the NOAA-15, 16, and 17 satellites are
given at selected times throughout the 21–22 January 2005 magnetic storm. (b) The coverage of the NOAA POES satellites
is shown. The maximum proton energy input at 21:00 UT occurs during the northward IMF interval of the solar filament.
Proton precipitation intensifies and moves equatorward during this interval compared to the time of the ICME sheath region
in which strong southward IMF drove the storm development.

Journal of Geophysical Research: Space Physics 10.1002/2013JA019748

KOZYRA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5432



at 21.6 MLT near 21:53 UT and on NOAA-16 at 2.3 MLT near 20:41 UT, both in the Northern Hemisphere. These
are both at the time of maximummagnetotail stretching associated with the development of the WDPS/CDPS.

Maximum> 30 keV proton precipitation was observed near the time when the solar wind dynamic pressure
was largest. After that, the proton precipitation decreases roughly in accordance with the pressure. The
auroral proton precipitation at 0.1–20 keV had roughly the same time evolution. The most important feature
is that intense precipitation continued and even intensified after the IMF turns northward. Peak fluxes
appeared at 20–21 UT on all three satellites confirming the unusual timing of the storm maximum during
the northward IMF interval of the ICME.

The total energy flux in precipitating 30–2500 keV protons for Figure 20-1c is 67 GW or 4.2 × 1026 keV/s. This is
under predominantly northward IMF conditions. SYM-H* at 21:00 UT in Figure 3e is ~�120 nT, which
corresponds to a total ring current energy content of 3.0 × 1031 keV using the Dessler-Parker-Sckopke relation
[Dessler and Parker, 1959; Sckopke, 1966]. If this integrated precipitation loss was entirely from the ring current,
it would deplete the ring current energy in less than 20 h. As a point of comparison, precipitation losses
during the 8–9 February 1986 superstormwithminDst~�300 nT reached estimated values near 1 × 1027 keV/s
or 160 GW in the early recovery phase just after the peak of the storm [Kozyra et al., 1998].

In Figure 20-1d (22:30–01:30 UT), the proton precipitation zone still extends to 50° MLAT but the precipitating
flux is considerably weaker. The total energy flux in precipitating protons has dropped to 12 GW. These
observations placed in a global context using the MHD+ RCM simulation indicate that magnetotail
stretching caused by the WDPS/CDPS is a likely cause for the equatorward motion of the large-scale proton
precipitation zones.

There is a remarkable correspondence between the regions of strong ionospheric electric fields on the nightside
in the simulation and the observed location and extent of 30–2500 keV proton precipitation zones in Figure 20.
Figure 21 compares a 3 h map of the proton precipitation centered at 21:00 UT to the ionospheric electric
field (Figure 21b), the polar cap potential pattern (Figure 21c), and the Joule dissipation (Figure 21d) from
the simulation at this same time. The right column is from the MHD-only simulation and the left column from
theMHD+RCM simulation. A comparison between the columns shows that the strong electric fields across the
nightside are produced by the ring current. They are not present in the MHD-only run.

These ionospheric electric fields from the MHD+RCM simulation are produced by partial closure of the ring
current-associated region 2 FACs through the region of low conductance equatorward of the electron auroral
oval on the duskside [cf. Ridley and Liemohn, 2002]. The agreement between the location of these strong
electric fields and the location of the proton precipitation is particularly interesting given that no information
from the NOAA POES observations was used as input to the global models.

The potential distribution from the MHD+ RCM simulation (Figure 21c, left) shows a single lobe cell driven
by antiparallel poleward-of-cusp reconnection during weak northward IMF conditions with large IMF By
component as described in Reiff and Burch [1985]. Superimposed on this cell is a secondary negative
potential peak spanning from the equatorward edge of the auroral oval to subauroral latitudes associated
with the partial ring current closure. The simulation agrees closely with average characteristics of the
observed ring current-associated potential peak and westward convection described in Foster and Vo [2002]
termed a subauroral polarization stream (SAPS). SAPS potentials typically span the subauroral region from the
nightside to the early morning sector for all Kp values greater than 4. On 21 January at 21:00 UT, Kp was 7+

falling from a Kp of 8 in the previous 3 h interval. In agreement with observations, the simulated SAPS
convection (perpendicular to the electric fields) spans the equatorward gradient in the potential pattern.
The bottom plots (Figure 21d on the left for the MHD+RCM run and on the right for the MHD-only run)
shows the Joule dissipation. The SAPS electric fields are associated with a broad in local time premidnight
region of weak Joule dissipation.

NOAA POES also observes energetic neutral atoms (ENAs) at ring current energies in a belt encircling
the Earth at low-altitude in the equatorial region (not shown). This belt is referred to as the Storm Time
Equatorial Belt (STEB) [Søraas et al., 2002, 2003]. The ENA flux directly reflects the number of ring current
protons along the line of sight in the equatorial plane. As a consequence, the extent in local time and
the intensity of the ENA fluxes supply important information about the ring current and its development
[cf. Søraas and Sørbø, 2013] that is not masked by other current systems or dynamic pressure variations as
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occurs when the Dst index is used to monitor ring current behavior. On 21 January 2005, ENA fluxes from
the STEB were observed by NOAA-15, NOAA-16, and NOAA-17. The injection into the ring current starts
at around 17:10, and there is a larger increase around 18:45–21:00 UT when the large pressure pulse hits
the magnetosphere confirming the unusual timing of the ring current maximum fluxes (storm maximum)
during the northward IMF interval of the ICME.

6.2. Coupling to the Equatorial Ionosphere

The effects of the solar filament reached all the way into the equatorial ionosphere triggering a brief equatorial
superfountain at first impact and later a distortion of the equatorial ionization anomaly (EIA). To understand
the linkageswith the solar filament, the basic workings of the equatorial ionosphere are described first and then
the observations during the storm presented.

Figure 21. (a) Comparison is made between the global pattern of proton precipitation derived by combining observations
of NOAA-15, 16, and 17 over a 3 h interval centered at 21:00 UT on 21 January 2005 and signatures of the ring current
electrodynamics in the (1) MHD+ RCM simulation and (2) MHD-only simulation. The simulation outputs include the
(b) ionospheric electric field, (c) the electric potential pattern (Phi), and (d) the Joule heating rate. Electric fields and the
potential pattern are seen in the dusk to postmidnight sector at low latitudes in the MHD+RCM simulation that result from
the closure of the partial ring current. These same signatures are not seen in the MHD-only simulation, which did not
generate a significant ring current. The location of the ring current signatures in the ionospheric electrodynamics is in close
agreement with the location of the observed ring current precipitation during northward IMF conditions.
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6.2.1. The Equatorial Superfountain
During quiet times, because magnetic field lines are horizontal at the equator, eastward electric fields that
result from the normal neutral wind dynamo produce upward E × B drifts there, raising the F2 layer to higher
altitudes. The uplifted plasma then slips down along slanted magnetic field lines to higher latitudes on either
side of the equator under the influence of gravity and pressure gradients forming the EIA—two crests of
enhanced ionization one on either side of themagnetic equator near ±20° MLAT. Under disturbed conditions,
magnetospheric electric fields (called prompt penetration electric fields) can leak into the equatorial region
[cf. Jaggi and Wolf, 1973; Kelley et al., 1979; Spiro et al., 1988; Fejer and Scherliess, 1995], overwhelming
these dynamo fields and amplifying the normal equatorial fountain. Only during superstorms (typically
Dst<�240 nT) are prompt penetration electric fields strong enough to lift the equatorial F2 layer to
altitudes of 800–1000 km before the ring current is able to reestablish shielding. Upward drifts can
reach more than 1 km/s, total electron content can increase by more than 350% on the dayside, and EIA
crests can move poleward as far as 30°–40° from the magnetic equator [Greenspan et al., 1991; Basu
et al., 2001; Huang et al., 2005a; Tsurutani et al., 2004; Mannucci et al., 2005; Basu et al., 2007; Tsurutani
et al., 2007, 2008; Astafyeva, 2009]. Eastward prompt penetration electric fields and upward ion drifts
are further strengthened just after sunset by the gradients in ionospheric conductance there. After
dusk, photoionization is insufficient to replenish the ionospheric density below the rising F2 layer and a
deep hole forms in which the ionospheric density can drop by several orders of magnitude from its
normal level [cf. Greenspan et al., 1991; Lu et al., 2013]. The DMSP satellite at 840 km altitude actually
moves under the F2 peak and observes a steep dropout in density at the location of the superfountain
in the dusk sector.

The magnetic storm of 21 Jan 2005 produced an array of complex signatures in the equatorial region
described by Zong et al. [2010] with the Digisonde Global Ionospheric Observatory, Santos et al. [2012] in
the South American sector, and Sahai et al. [2011] in the Latin American sector and global total electron
content maps. Between ~17:10 UT and 1845 UT under dominantly southward IMF conditions, enhanced
upward ion drifts with an average magnitude of ~67m/s lifted the ionosphere at Jicamarca, Peru, near
the equator from 350 km to 620 km [Zong et al., 2010]. At 19:00 UT, the IMF rotated northward and the F2
layer dropped to 515 km altitude at ~120m/s. The upward drifts increased the height of the F2 layer (hmF2)
and decreased the density at the peak (NmF2) at observations sites near the magnetic equator [Zong et al.,
2010; Sahai et al., 2011; Santos et al., 2012]. The density decrease was due to themovement of ionization away
from the equator in an enhanced equatorial fountain.

Despite the modest size of the 21 January storm, a superfountain developed in the dusk sector in concert
with a brief region of southward IMF on the leading edge of the solar filament. Observations along the
DMSP F15 satellite track at 834 km altitude are shown in Figure 22. Vertical ion drifts reached nearly 1 km/s
centered at the magnetic equator just before 21 h MLT and a deep density trough developed in the same
location. Since the penetration of magnetospheric electric fields to low latitudes is driven by variations in
the effectiveness of ring current shielding (see review byWolf et al. [2007]), this is an indicator that the ring
current shielding properties were significantly modified by the initial impact of the solar filament. The
strong southward IMF lasted only about 10min from ~18:50 to 19:00 UT. Consistent with this, upward ion
drifts and associated density dropouts were not seen in transits of the equatorial ionosphere immediately
preceding or following this time. Interestingly enough, no response of the equatorial drifts at local times
near noon was reported in the dayside observations at Jicamarca [Zong et al., 2010; Sahai et al., 2011;
Santos et al., 2012].

To place these local views into more global context, Figure 22 (top) gives total electron content (TEC)
produced by the Jet Propulsion Laboratory (JPL) in the time interval 18:45–19:00 UT with Jicamarca
indicated by a white star on the west coast of South America. The TEC maps were produced with the
Global Ionospheric Maps (GIM) software [Mannucci et al., 1998, 1999] on the basis of ground-based GPS
sites and GPS satellite data. On the lower left, an expanded view near dusk is provided including the location of
DMSP F15. The deep but short-lived density depletion seen by F15 appears in the TEC map as a rather weak
localized decrease in TEC near the magnetic equator intersected on its westward edge by the DMSP satellite.

The ring current shielding properties were calculated by the MHD+RCM simulation during the storm
development. Under steady but disturbed conditions, the ring current shields the inner magnetosphere
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from the full effect of the dawn-dusk magnetospheric convection electric field. But conditions are rarely steady.
As the strength of the southward IMF and the convection electric field both increase, the shielding layer
provided by the ring current responds by moving earthward. This response time is dependent on the drift
time of the ring current particles. During this reconfiguration, the convection electric field is temporarily
undershielded and a transient dawn-dusk electric field penetrates into the inner magnetosphere at times all
the way to the equator. This PPEF is eastward on the dayside causing upward plasma drifts and westward on
the nightside starting at around 21 h MLT [Fejer and Scherliess, 1995, 1997] causing downward drifts in the
equatorial ionosphere. When the IMF turns northward after an interval of southward IMF, the shielding layer,
which was previously configured to shield out a stronger convection electric field, must reconfigure to cancel
out a weaker field and temporarily overshields the inner magnetosphere. As a result, a transient dusk-to-dawn
electric field penetrates into the equatorial ionosphere from high latitudes and produces downward vertical
plasma drifts on the dayside, upward on the nightside. This tendency for overshielding electric fields to
occur only when strong northward IMF follows a period of southward IMF and not after a quiet interval was
seen in DMSP data [Huang et al., 2010].

Figure 22. The DMSP F15 satellite, flying near 850 km altitude, crossed the equatorial ionosphere just as the solar filament
material hit the front side of the magnetosphere upstream of the Earth. F15 observed rapid (1000m/s) upward ion drifts
and a deep hole in the ionosphere where densities dropped by 2 orders of magnitude from ~1 × 105 cm�3 near the
edges to ~ 3 × 103 cm�3 in the center. These are characteristic signatures seen when F15 slices through an ionospheric
superfountain. However, superfountains appear almost exclusively during intense magnetic storms when strong solar
wind electric fields penetrate all the way into the equatorial ionosphere. The 21 January storm was relatively moderate
with minimum SYM-H~�100 nT.
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Figure 23 displays the distributions of
Ey in the equatorial plane from the
MHD-only (left column) and MHD+RCM
(right column) simulations at (1) the time
of strongest IMF Bz and (2) the time of
impact with the leading edge of the
solar filament. The MHD-only simulation
produced essentially no ring current,
and thus, the shielding of the inner
regions was very poor at both times. In
the MHD+RCM simulation at the time
of maximum IMF Bz (b1), a significant
amount of shielding by the ring current
had already developed. This shielding
was disrupted at the time of the filament
impact (b2) allowing regions of +Ey to
penetrate to the inner boundary of the
model, mapping presumably into the
equatorial ionosphere most strongly in
the dusk sector. This is consistent with
the brief appearance of an ionospheric
superfountain at the equator in the dusk
sector observed by DMSP F15 at the time
of the filament impact.

It has recently been noted that the
ability of the ring current to shield out
magnetospheric electric fields from the
inner magnetosphere and ionosphere
is effected by magnetotail stretching
[Fejer et al., 1990; Sazykin, 2000; Garner
et al., 2004]. In simulations, Maruyama
et al. [2007] found that both the
magnitude and duration of the prompt

penetration electric field are correlated with magnetotail stretching. The stretching contributes a dusk-to-dawn
induction electric field that partially cancels the dawn-to-dusk convection electric field and prevents the
shielding layer from moving sufficiently earthward to reestablish shielding. Unlike in these past studies of
undershielding, strongmagnetotail stretching occurred in the present event but was associated with northward
IMF, which may have prolonged the interval of overshielding electric fields.
6.2.2. Amplification of the Equatorial Ionization Anomaly
Sahai et al. [2011] and Santos et al. [2012] report an unusual development of the EIA on 21 January. In the
Latin American sector starting at 20 UT, the height of the peak density in the F2 layer (hmF2) increased at
middle to low latitudes but decreased closer to the magnetic equator. In the South American sector at
Fortaleza, Peru, upward drifts of ~50m/s, starting at 21:30 UT (18:30 LT), raised the F2 peak from 300
to 500 km. The upward ion drifts were attributed to an eastward prompt penetration electric field due
to strong auroral activity during northward IMF conditions by Santos et al. [2012] and to the effects of
equatorward winds resulting from Joule heating or possibly a prompt penetration electric field by Sahai
et al. [2011]. At the equator, downward plasma drifts in response to the westward ionospheric electric field
decreased hmF2 near Manaus, Brazil [Sahai et al., 2011], but create no significant response at Jicamarca,
Peru [Santos et al., 2012].

We investigate the anomalous EIA crest development by placing it into a more global context taking into
account conditions throughout geospace. Figure 24 compares TEC observations of the EIA crests on 21
January to those during the 3 days prior at the same UT. The daily AP value is given to the right of each
map to indicate the level of magnetic activity on each of these days. Though magnetic disturbances on

Figure 23. The distributions of Ey in the equatorial plane are shown from
the MHD-only (left column) and MHD+RCM (right column) simulations
at (1) the time of strongest southward IMF (positive solar wind Ey) and
(2) the time of impact with the leading edge of the solar filament also
under southward IMF conditions. No significant ring current is present
in the MHD-only simulation so a significant amount of the dawn-dusk
electric field penetrates through to the inner boundary of the model. In
the MHD+RCM simulation, the Ey is partially shielded from the inner
magnetosphere by the ring current at 18:32 UT but this partial shielding is
disrupted again at the time of the filament impact at 18:48 UT, which
creates strong penetration electric fields in the dusk sector (2b).
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18–19 January are comparable to or greater than those on 21 January, the equatorial ionization anomaly
does not exhibit the same intensification on those days. The unusual distortion of the EIA occurs during the
interval of high dynamic pressure associated with the solar filament and not on other days with similar
levels of magnetic disturbance.

To explore the processes responsible for this unusual configuration, additional background information is
needed to understand the equatorial dynamics associated with the stormtime disturbance dynamo [cf. Blanc
and Richmond, 1980; Scherliess and Fejer, 1997; Fejer and Emmert, 2003], which differ markedly from those of

Figure 24. Comparison of the structure of the equatorial ionization anomaly on 21 January 2005 to that on the previous
three days. Despite equal or higher levels of magnetic activity on 18 and 19 January, the EIA crests do not exhibit similar
behavior to that on 21 January.
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the PPEF described in the last section. As neutral winds are enhanced by energy inputs during the storm,
they blow across magnetic field lines and produce dynamo electric fields that are westward on the dayside
and eastward on the nightside—opposite to PPEFs. Timescales for their development are much longer than
the nearly instantaneous changes driven by PPEFs.

The thermospheric density responds to high-latitude energy inputs with a delay time of 3–6 h [Hedin et al., 1981].
The statistical delay in the neutral atmosphere response to high-latitude energy inputs near the equatorial
region is 3.5–4 h [Sutton et al., 2009], which is consistent with the response of the equatorial electric field to the
disturbance dynamo [Blanc and Richmond, 1980]. However, neutral wind surges can transmit high-latitude
disturbances to the equatorial ionosphere in 1–2 h [Fuller-Rowell et al., 2002]. This is consistent with the time
delay between the spike in Joule heating shown in Figure 3g and the start of the changes in the EIA crests.

Equatorward winds push ionization upward along slanted magnetic field lines at middle and low latitudes
increasing hmF2 and producing an increase in ionospheric density due to the decrease in collisional losses at
these higher altitudes [cf. Lu et al., 2012, 2013 and references therein]. Conversely, poleward neutral winds
push ionization down slanted magnetic field lines increasing collisional losses because of the higher
atmospheric densities and thus eroding the ionosphere. However, these neutral wind surges have no effect
on the hmF2 at the equator since the field lines there are horizontal. Any changes in the hmF2 at the equator
are due to disturbance electric fields. At off-equatorial latitudes, vertical drifts due to disturbance dynamo
electric fields or PPEFs will amplify or oppose the drifts due to neutral winds depending on their relative
directions. In the present case, westward electric field due to the disturbance dynamo or an overshielding
PPEF or some combination of the two is consistent with the downward movement of hmF2 at the equator. An
upward movement of hmF2 at midlatitudes in response to a disturbance equatorward wind surge is needed
to overcome the downward drift produced by the westward electric field and amplify the EIA crests.

Evidence for such an equatorward wind surge is shown in Figure 25 from a TIMEGCM simulation of the
thermospheric response to the 21 January 2005 magnetic storm with high-latitude potential patterns, Joule
heating rates, and auroral power given by the AMIE procedure. The TIMEGCM [Roble and Ridley, 1994; Roble,
1995] is a global model of the mesosphere-thermosphere-ionosphere system, extending from ~30 km to
about 500 ~ 800 km altitude (depending on solar activity). It has a nominal resolution of 5° × 5° in latitude and
longitude and one-half scale height in the vertical, with a total of 49 constant pressure levels. The model
incorporates aeronomical, dynamical, and electrodynamical processes that are appropriate for these regions.
The lower boundary of the TIMEGCM is specified by climatological tides based on the Global Scale Wave
Model (GSWM) [Hagan and Forbes, 2002, 2003]. In addition, daily averaged observations from the National
Centers for Environmental Predictions (NCEP) analysis are used to represent other longer wavelength
atmospheric forcing. The upper boundary inputs to the model include the solar UV and EUV fluxes, energetic
particle precipitation, and ionospheric electric fields. The AMIE cross-polar cap potential and Joule heating
rates are shown in Figures 3f and 3g, respectively. The magnitude of the total Joule heating rate is consistent
with a similar calculation presented in Sahai et al. [2011].

In Figure 25, a comparison is given between (1) the timing and development of a neutral wind surge in the
simulation powered by the observed spike in Joule heating and (2) the intensification of the equatorial
ionization anomaly (EIA) seen in TEC at the same time. Heating of the neutral atmosphere in a localized
region on the dayside (1a and 1b) in the simulation, creates a neutral wind surge (1c) that reaches the
equator from both hemispheres by 20:00 UT (1d). Equatorward winds from the Southern Hemisphere
cross over the equator and become poleward winds in the Northern Hemisphere by 22:00 UT (1f ). With a
small time delay but by 23:00 UT, strong poleward winds also develop in the Southern Hemisphere (1g).
The timing and location of the heating and wind surges are consistent with the features in the development
of the EIA seen in vertical TEC (VTEC) observations. A region of enhanced VTEC localized over North America
at midlatitudes (2a) develops in association with the initial localized temperature increase in the neutral
atmosphere due to Joule heating. As the neutral wind surges reached the equator from both northern and
southern high-latitude regions, ionization in the EIA crests is pushed up slanted field lines, increasing
the density (2b). Densities reached maximum values in the crests by 21:40 UT (2c). The density in the EIA
crest in the Northern Hemisphere began to decrease as equatorward winds in the Southern Hemisphere
crossed the equator and became poleward winds in the Northern Hemisphere. Plasma is now blown
down slanted field lines to lower altitudes where losses are greater (2d) and the densities in the northern
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EIA crest began to decrease. By 23:00 UT, strong poleward winds in the Southern Hemisphere caused the
density of the southern EIA crest to drop some time after the density decrease in the northern crest (2e).
By 23:30 UT, the EIA reconfigured to a state resembling that during active conditions in the days prior
to the filament arrival (2f ).

Figure 25. A comparison is given between (1) an equatorward neutral wind surge (1a–1e) driven by a spike in Joule heating
shown in neutral temperature and winds from the TIMEGCM model and (2) anomalous development of the equatorial
ionization anomaly crests shown in global JPL TEC maps as the wind surge reaches the equator (2b and 2c). The neutral
wind drives plasma up slanted field lines to higher altitudes where loss rates are diminished increasing the density in the
crests. The equatorward wind passes over the equator and become poleward wind in the opposite hemisphere (1f and 1g)
driving plasma down slanted field lines and decreasing the density in the crests (2d–2f). See text for more details.
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Although the solar filament material did not arrive in geospace until 18:45 UT, we propose that it influenced
the production of all three of the Joule heating peaks. The momentum of the massive solar filament as it
traveled through the background heliosphere almost certainly played a key part in sustaining the high
velocity of the ICME. High velocities at 1 AU are necessary for producing the unusually strong IP shock at
the leading edge of the ICME. The movement of the solar filament forward through the magnetic flux rope
also would have increased the compression of the ICME sheath region, intensifying the southward IMF.
These structures drove the first two peaks in the Joule dissipation prior to the arrival of the solar filament.
Conditions at the leading edge of the solar filament produced the third peak.

7. Summary and Conclusions

The 21 January 2005magnetic storm is a complex event which exhibited an array of unusual features compared
to other storms of similar size. The major question that began the investigation is why does a storm of this
modest size contain geospace phenomena seen most usually during superstorms? What are the differences
in the space environment over other moderate storms that make this storm behave in some ways like a
superstorm and in others ways like a moderate event? What do these departures from what we expect (and
normally observe) tell us about the way the geospace system works?

In this paper, we focused on the most direct effects of the dense solar filament on the geospace environment
and the consequences in connected regions. Each of these effects can be linked to the exceptional dynamic
pressure of the filament or to the capture of solar filamentmaterial directly into themagnetosphere. In all cases,
the effects are strongly dependent on the orientation of the IMF at the time and on the past history of the
solar wind driving. Most importantly, the solar filament arrived after a significant ring current, driven by the
southward IMF in the ICME sheath, had already formed.

1. The initial solar filament impact under southward IMF conditions produced a brief (10–15 min) equatorial
superfountain in the dusk sector identified on the basis of strong upward ion drifts approaching 1 km/s
at 835 km altitude spatially coincident with more than an order of magnitude drop in ionospheric
density observed by DMSP F15. At the same time, the disruption in the ring current shielding reached
its maximum in the MHD+ RCM simulation in the dusk sector. No signature of this intensification in
prompt penetration electric fields was observed at ground-based stations closer to noon MLT, which
implies that gradient in electrical conductance near dusk was an important factor. Superfountains
occur during only the most intense magnetic storms and are surprising in a more moderate event like
the 21 January 2005 storm. Equally surprising is the development and decay of a superfountain on
timescales of tens of minutes.

2. Under northward IMF conditions, the exceptionally dense solar filament material was captured directly
into the magnetosphere to form a cold dense plasma sheet (CDPS). When the filament engulfed the
magnetosphere, the density in the magnetosheath rose to ~130 cm�3 and the temperature to 1–2 keV. At
this point, the IMF rotated northward and double high-latitude reconnection converted magnetosheath
flux tubes filled with solar filament plasma directly into magnetospheric flux tubes, capturing the filament
material into the magnetosphere and forming a CDPS. Both the simulation and observations indicate
that within 1 h the plasma sheet densities reaching 6 cm�3 at midnight in geosynchronous orbit, tens of
cm�3 at dawn and dusk, and tens to 100 cm�3 in the low latitude boundary layer (LLBL) near noon. The
double high-latitude capture process produced a closed LLBL so the tens of cm�3 plasmas on the
dayside are essentially part of the plasma sheet. The simulation, which included the drift physics of
the inner magnetosphere, reproduced the characteristics and timing of the CDPS remarkably well
based on a comparison with observations by the LANL geosynchronous satellites and Double Star TC-1.
These simulations expand upon earlier investigations into the formation of the CDPS by including a fully
coupled inner magnetosphere module.

3. The characteristics of the CDPS and the topology of the magnetotail during northward IMF depend
on the strength of the IMF By component. Initially, the IMF By was large and the magnetotail was open.
When the IMF rotated to purely northward, the magnetotail closed, stretched out to over 150 RE in length,
and then snapped back to ~ 60 RE for the remainder of the ICME. Correlated with these topological
changes, the temperature of the CDPS transitioned from warmer to cooler. These plasma sheet states
were labeled WDPS and CDPS, respectively, to emphasis this change in temperature.
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4. Two intervals of strong magnetotail stretching developed in the simulation. The first was a response to
the arrival of the high dynamic pressures in the solar filament. The stretching diminished as the pressures
decreased from peak values. However, simultaneous with the appearance of the WDPS/CDPS at
geosynchronous orbit, a second interval of strong magnetotail stretching developed. Magnetotail
stretching is generally associated with magnetic activity. However, in this case, the AL index indicated a
low level of magnetic activity. Despite being cold, the high filament densities produced sufficient pressure
to inflate the low-latitude boundary layer as a result of diamagnetism and supply stretched flux tubes
to the magnetotail plasma sheet from both flanks.

5. The stretchedmagnetotail was accompanied by an expanded diffuse auroral region in both ions and electrons
that persisted throughout the 6h of the filament passage, and by an intensification and equatorward
movement of 30–2500 keV proton precipitation zones. Both of these phenomena have been associated
with magnetotail stretching through themagnetic field line curvature (FLC) scattering of energetic ions and
electrons. Two intervals of strong magnetotail stretching in the simulation were correlated with equator-
ward movements of the boundary of auroral precipitation. The first, observed by IMAGE FUV, corresponded
closely with the onset of the high solar wind dynamic pressures in the filament. However, images of the
auroral oval from TIMED GUVI, and measurements of precipitating high-energy ions and electrons during
passes of the NOAA satellites indicate a second equatorward excursion of the auroral and high-energy
precipitation, respectively, at the time of peak magnetotail stretching by the WDPS/CDPS in the simulation.

6. The location of the observed intense proton precipitation coincided remarkably well with the location of
the magnetospheric ring current pressure peak in the MHD+RCM simulation identified by the associated
potential drop, electric fields, and Joule dissipation in the ionosphere.

7. A broad region of soft electron precipitation was observed equatorward of the cusp and from the dawn to
the dusk sector by the FAST and DMSP satellites during the northward IMF interval of the solar filament.
The processes responsible for this extended region of precipitation are not investigated here. However, it
very likely played a role in the anomalous expansion of the neutral atmosphere observed by the CHAMP
and GRACE satellites during this storm [Sadler et al., 2012].

8. Joule heating rates in the cusp region were amplified to superstorm levels by the strong IMF By, high
dynamic pressure, and fast solar wind speeds. The strong IMF By and high dynamic pressures at the
leading edge of the filament in combination with fast solar wind flows (near 900 km/s) drove exceptionally
strong Joule heating rates (reaching up to 174mW/m2) in and around the cusp regions.

9. Lastly, an intensification of the equatorial ionization crests appeared during this period that was not seen
previously in a similarly active 2 day period just before the 21 January event. The timing suggests that
an equatorward neutral wind surge in response to the extreme impulsive Joule heating events in the
cusp was a significant driver of the equatorial electrodynamics, pushing ions up slanted magnetic field
lines to higher altitude and decreasing recombination losses. The simultaneous downward drifts observed
at the magnetic equator occurred during a persistent interval of overshielding prompt penetration electric
fields in the MHD+ RCM simulation associated with magnetotail stretching during northward IMF.
This raises questions about the role of magnetotail stretching by cold superdense plasma sheets in
maintaining ring current overshielding. In this interval, the relative contributions of disturbance dynamo
and overshielding prompt penetration electric fields are still an open issue.

These phenomena provide insights into some of the ways that high dynamic pressure amplifies geomagnetic
disturbances. Remarkably all these features, closely coupled to each other and to the solar filament, occurred
during a dominantly northward IMF interval, normally associated withmagnetic quieting. Evidence suggests that
some of the largest andmost damaging geospace disturbances including the Carrington event of 1859 [Tsurutani
et al., 2003; Manchester et al., 2006; Li et al., 2006] and the 4–5 August 1972 event [Vaisbert and Zastenker, 1976;
d’Uston et al., 1977], which disrupted a major communications system in the United States [Boteler and van Beek,
1999], also contained dense plasma traveling directly behind the ICME sheath region toward Earth.
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