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Abstract In this paper we study the presence of irregularities and scintillation in relation to the
nightside part of a long-lived, Sun-aligned transpolar arc on 15 January 2015. The arc was observed in
DMSP UV and particle data and lasted at least 3 h between 1700 and 2000 UT. The arc was more intense
than the main oval during this time. From all-sky imagers on Svalbard we were able to study the evolution
of the arc, which drifted slowly westward toward the dusk cell. The intensity of the arc as observed from
ground was 10–17 kR in 557.7 nm and 2–3.5 kR in 630.0 nm, i.e., significant emissions in both green and
red emission lines. We have used high-resolution raw data from global navigation satellite systems (GNSS)
receivers and backscatter from Super Dual Auroral Radar Network (SuperDARN) radars to study irregularities
and scintillation in relation to the polar cap arc. Even though the literature has suggested that polar cap arcs
are potential sources for irregularities, our results indicate only very weak irregularities. This may be due
to the background density in the northward IMF polar cap being too low for significant irregularities to
be created.

1. Introduction
The high-latitude ionosphere is highly dynamic, forming plasma irregularities on a wide variety of scale sizes,
from 1000 km scale islands of enhanced plasma density down to irregularities at decameter scale [e.g., Weber
et al., 1984; Basu et al., 1990a, 1990b; Oksavik et al., 2012; Moen et al., 2012, 2013].

Southward interplanetary magnetic field (IMF) conditions are thoroughly investigated and are the focus of
most irregularity studies. During southward IMF conditions one can frequently observe polar cap patches,
tongues of ionization, poleward moving auroral forms, and magnetospheric substorms. Polar cap patches are
100–1000 km islands of enhanced plasma density being segmented from the dayside high-density plasma in
the cusp region [e.g., Weber et al., 1984; Lockwood and Carlson, 1992; Oksavik et al., 2010; Carlson, 2012; Zhang
et al., 2013a, 2013b]. Patches may develop smaller-scale irregularities down to decameter scale through the
Kelvin-Helmholtz (KH) and gradient drift instabilities [e.g., Basu et al., 1990a; Carlson et al., 2007, 2008; Moen
et al., 2012; Oksavik et al., 2012; Clausen et al., 2016]. During strong and stable polar cap convection, segmen-
tation may not happen and a continuous tongue of ionization (TOI) may be formed across the polar cap [Sato,
1959; Knudsen, 1974; Foster et al., 2005]. In addition to patches, transient magnetopause reconnection gives
rise to poleward moving auroral forms (PMAFs) [e.g., Feldstein and Starkov, 1967; Vorobjev et al., 1975; Sandholt
et al., 1990, 1993; Thorolfsson et al., 2000]. Magnetospheric substorms cause an explosive release of energy
into the auroral ionosphere [e.g., Akasofu, 1964; McPherron, 1970, 1979; Rostoker et al., 1980; Elphinstone et al.,
1996]. All of these phenomena are associated with irregularities causing disturbances in transionospheric
radio links: Patches [Buchau et al., 1985; Weber et al., 1986; Basu et al., 1990a, 1991, 1994, 1998; Coker et al., 2004;
Clausen et al., 2016], TOIs [van der Meeren et al., 2014], PMAFs [Oksavik et al., 2015; Jin et al., 2015], and auroral
activity [Aarons et al., 2000; Spogli et al., 2009; Prikryl et al., 2010; Ngwira et al., 2010; Tiwari et al., 2012; Jiao et al.,
2013; Kinrade et al., 2013; Hosokawa et al., 2014; van der Meeren et al., 2015; Clausen et al., 2016].

However, northward IMF conditions are much less studied, although they occur half the time. During such con-
ditions, the predominant feature of the polar ionosphere is polar cap arcs [e.g., Carlson, 1994, and references
therein]. While reviewing space weather challenges for the polar cap ionosphere, Moen et al. [2013] suggested
in passing that flow shears near transpolar arcs might be a space weather concern by creating irregularities
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through the KH instability. Unfortunately, there exists barely any studies at all on irregularities from polar
cap arcs. In this paper, following the general methods of van der Meeren et al. [2014, 2015] and Oksavik et al.
[2015], we use all-sky images, raw and reduced data from several multiconstellation global navigation satellite
system (GNSS) receivers, and Super Dual Auroral Radar Network (SuperDARN) backscatter, as well as DMSP UV
and particle data to study scintillation and irregularities in relation to an intense, detached polar cap arc.

First, we will give a brief overview of polar cap arcs, GNSS scintillations, and the current state of knowledge of
the relation between these two phenomena.

1.1. Polar Cap Arcs
Optical arcs poleward of the auroral oval have been observed for at least a century [Mawson, 1916] and
primarily occur during quiet geomagnetic conditions [Davis, 1963] and northward IMF [Berkey et al., 1976;
Gussenhoven, 1982]. The phenomenon is not yet fully understood.

The naming is not entirely consistent in literature. Usually [e.g., Fear and Milan, 2012a, 2012b; Carlson, 1994;
Newell et al., 2009, and references therein], the term “polar cap arcs” and “high-latitude arcs” refer to any type
of aurora inside the polar cap. Such auroral features are often Sun-aligned and may stretch across a significant
part of the polar cap, giving rise to the names Sun-aligned arcs and transpolar arcs, respectively. In the case
that they connect the nightside and dayside auroral oval, they are often termed theta aurora. In this paper we
will use the term “polar cap arc.”

According to a review by Newell et al. [2009], three different types of polar cap arcs exist, possibly with differ-
ent underlying mechanisms. The first type is intensifications of polar rain. These are common, but weak, and
consist of only electron precipitation (without associated ions). The second type is Sun-aligned arcs which
appear detached from the auroral oval in optical data but are adjacent to the auroral oval in particle data
(though usually with a plasma regime distinct from the auroral oval). The third type occurs very rarely, and is
intense, Sun-aligned arcs well detached from the auroral oval in both particle and optical data. These events
can include plasma sheet ions (such as O+) as well as electrons.

Convection has been observed to be antisunward in the nightside portion of the arc and either sunward
[Eriksson et al., 2006] or mixed [Liou et al., 2005] in the dayside portion of the arc. In the vicinity of polar cap
arcs, convection is structured, with multiple reversals, flow shears, and flow channels [e.g., Carlson and Cowley,
2005; Eriksson et al., 2006; Zou et al., 2015].

1.2. Scintillation From Polar Cap Arcs
Scintillations are rapid fluctuations in the amplitude or phase of a radio signal, such as GNSS signals, and can
be caused by irregularities in the ionosphere with scale sizes of decameters to kilometers [e.g., Hey et al., 1946;
Basu et al., 1990a, 1998; Kintner et al., 2007]. The irregularity scale sizes causing scintillation are determined
by the Fresnel radius, which for GPS L1 signals (1575.42 MHz) passing through irregularities at an altitude of
350 km is approximately 360 m [Forte and Radicella, 2002]. Amplitude scintillations are represented by the S4

index and are due to irregularities with scale sizes at and below the Fresnel radius, from hundreds of meters
down to tens of meters. Phase scintillations are represented by the !" index and are caused by irregularities
above the Fresnel radius, from a few hundred meters to several kilometers [e.g., Kintner et al., 2007].

Buchau et al. [1985] and Basu et al. [1990b] observed 250 MHz scintillation in relation to polar cap arcs. The
latter study found an increase in !" of ∼7 times the background level and attributed it to sheared plasma
flow in association with the arc. Scintillation from polar cap arcs at GNSS L band frequencies (∼1.2–1.6 GHz)
is less studied. Prikryl et al. [2015a] included one example of moderate to strong GPS phase scintillation from
the dayside part of a transpolar arc following a strong solar wind dynamic pressure pulse which resulted in
large By oscillations. Prikryl et al. [2015b] performed a statistical study of high-latitude scintillation and found
that for northward IMF, the By-dependent dayside dawn-dusk asymmetry in scintillation was consistent with
the expected asymmetry of Sun-aligned arcs. The statistical scintillation in the duskside and dawnside sectors
was then attributed to Sun-aligned arcs.

We have not been able to find any studies of GNSS scintillation from polar cap arcs in the nightside ionosphere.

2. Instrumentation
2.1. GNSS Receivers
The GNSS data used in this study come from two NovAtel GPStation-6 GNSS Ionospheric Scintillation and
TEC Monitor. The receivers were installed in Svalbard in 2013 and are operated by the University of Bergen.
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The locations, geographic latitudes (GLAT), geographic longitudes (GLON), and magnetic latitudes (MLAT) of
the receivers are Longyearbyen (78.1∘ GLAT, 16.0∘ GLON, and 75.4∘ MLAT) and Ny-Ålesund (78.9∘ GLAT, 11.9∘
GLON, and 76.4∘ MLAT). Magnetic midnight is around 2100 UT at these locations.

All receivers track the GPS, GLONASS, and Galileo constellations at several frequencies. GPS and GLONASS
satellites were visible during the period of study and were tracked at L1 (1575.42 MHz). Additionally, one
GPS satellite was tracked at L5 (1176.45 MHz), and GLONASS was tracked at L2 (1227.60 MHz). The different
signals showed no significant difference in scintillation intensity (the levels were marginally higher in the lower
frequencies), so L1 will be used in this study.

The receivers output 60 s averaged data. The !" index is computed by detrending the carrier phase using a
sixth-order Butterworth filter with a cutoff frequency of 0.1 Hz and computing the standard deviation over
periods of 60 s. The S4 index is computed by taking the standard deviation of the received power over periods
of 60 s and normalizing by its mean value.

Using a 0.1 Hz cutoff frequency for the !" index is prevalent in the literature [e.g., Mitchell et al., 2005;
Béniguel et al., 2009; Li et al., 2010; Forte et al., 2011; Gwal and Jain, 2011; Alfonsi et al., 2011; Garner et al., 2011;
Kinrade et al., 2012; Jiao et al., 2013; Jin et al., 2014]. The !" index has been shown to be highly sensitive to
the detrending filter cutoff frequency, and 0.1 Hz can be problematic in the high-latitude regions [e.g., Forte,
2005]. However, as performed by van der Meeren et al. [2014, 2015] and Oksavik et al. [2015], it is possible to use
a spectrogram of the raw phase to get a better overview of the phase variations at different scales. The spec-
trograms were made using wavelet analysis, based on software provided by Torrence and Compo [1998]. In line
with previous GNSS studies, the Morlet wavelet was chosen as the mother wavelet [e.g., Mushini et al., 2012].
The wavelet spectrograms require no detrending of the raw phase. For further details on wavelet analysis the
reader is referred to the literature [e.g., Torrence and Compo, 1998; Mushini et al., 2012].

The receivers also output 50 Hz raw data (phase and power). In this study, the raw data are used to compute
the !" index with 1 s resolution using the method described above with periods of 1 s instead of 60 s.

For each receiver, data from satellites were excluded in directions (elevation/azimuth) known to cause multi-
path problems for that receiver. No satellites were used below 20∘ elevation. Occasionally, the receivers glitch
(most likely due to clock adjustments), causing a transient increase in scintillation for all satellites seen in that
receiver. Scintillation data around these glitches have been removed in this study.

The two all-sky imagers used in this study (to be detailed below) are colocated with the GNSS receivers.
Therefore, we have not performed any geographical projection of the GNSS ionospheric piercing points. We
have instead shown ground-based optical data and associated GNSS data on a polar grid using elevation and
azimuth.

2.2. All-Sky Imagers
We use data from two all-sky imagers (ASI). The ASIs are colocated with the GNSS receivers in Ny-Ålesund and
Longyearbyen and are operated by the University of Oslo. Both imagers are calibrated and have filters for red
(630.0 nm) and green (557.7 nm) emissions. Emissions at 630.0 nm are projected to 250 km, while emissions at
557.7 nm are projected to 150 km altitude. The exact projection altitude is not important for how the optical
data are used in this study.

For most of the time under study, parts of the 557.7 nm data were of relatively poor quality due to technical
problems (though the arc was clearly visible throughout the interval). We have, therefore, chosen to show
mostly 630.0 nm images. These problems did not influence the line-of-sight data shown in Figures 5 and 6.

2.3. DMSP UV and Particle Data
The Defense Meteorological Satellite Program (DMSP) spacecraft are in polar, Sun-synchronous orbits at a
nominal altitude of 840 km. The Special Sensor Ultraviolet Spectrographic Imager (SSUSI) instrument observes
UV emissions at several wavelengths [Paxton et al., 1992]. The channel used in the current study is 140–150 nm
(Lyman-Birge-Hopfield short filter, LBHS). We use calibrated, background-corrected intensities from the
Sensor Data Record (SDR) product. The data are projected to 150 km altitude. The projection is only used to
show that the satellite- and ground-based optical data are consistent, and the exact choice of altitude is not
critical for the purposes of this study.

The DMSP SSJ/4 particle detectors always point toward the zenith and measure precipitating electrons and
ions between 30 eV and 30 keV.
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Figure 1. Solar wind conditions on 15 January 2015 several hours prior to, during, and after the event. The data show
(a) northward IMF, (b) stable speed, and (c) stable density. The approximate time under study is shaded in gray.

2.4. Solar Wind
We use plasma and IMF data from the Wind spacecraft [Lepping et al., 1995; Ogilvie et al., 1995]. The spacecraft
was located at (X, Y, Z) = (196, 37,−15) RE (geocentric solar ecliptic coordinates). The data are time shifted to
the bow shock by the NASA OMNIWeb service.

2.5. SuperDARN Data
The Super Dual Auroral Radar Network (SuperDARN) transmits signals in the high-frequency (HF) range, which
scatters coherently from field-aligned decameter-scale irregularities [Greenwald et al., 1995; Chisham et al.,
2007]. HF backscatter is, therefore, an indicator of the presence of irregularities with scale sizes of tens of
meters.

3. Observations

Figure 1 shows the solar wind conditions around the time of the event on 15 January 2015. The time under
study is shaded in gray. The IMF is northward with By positive several hours prior to the event. The solar wind
conditions, in general, are stable. Figure 2 shows a polar cap arc in both optical and particle data (the particle
data are from the dayside part of the arc; unfortunately, there were no DMSP passes of the nightside part of
the arc). The arc is very long-lived, lasting at least 3 h from 1700 to 2000 UT. In the spectrograms, diffuse aurora
is visible at the equatorward edges, with discrete auroral structures farther poleward followed by polar rain.
The arc precipitation is outlined with black borders. The arc exceeds the main oval in optical intensity (LBHS)
and shows similar fluxes and higher electron energies than the discrete part of the main oval. The inverted
V structures in the arc (most clear in Figure 2d but visible in Figures 2e and 2f as well) indicate field-aligned
acceleration of electrons with resulting energies of up to ∼3 keV. High-energy ions (∼10 keV) are also visible
in the arc, though the ion flux is very low. The dayside part of the arc seems to be broken up into multiple arcs
in both the optical and particle data. In the nightside optical data (supported by the ground-based optical
data to be shown later), the arc seems not to be broken up.

The stability and intensity of the arc makes this an ideal candidate for a detailed case study. It is also interesting
to note that the arc seems well separated from the main oval in both optical and particle data, and this may
thus be the rare “type 3” arc as described by Newell et al. [2009].

Figures 3a and 3b show a good match between ground-based (from Longyearbyen) and satellite-based opti-
cal data. The arc is clearly visible in both red (630.0 nm) and green (557.7 nm) emissions throughout the
interval under study. Figures 3c–3e show how the arc moves across the ASI field of view in elevation/azimuth
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Figure 2. (a–c) Optical data and (d–f ) particle spectra from three passes of DMSP satellites on 15 January 2015. The data show a stable transpolar Sun-aligned
arc lasting for at least 3 h, well separated from the auroral oval in both optical and particle data. The field of view of the Longyearbyen ASI at 250 km altitude is
shown as a blue circle. The optical data are projected onto a geomagnetic grid. Black boxes outline the (dayside) polar cap arc in the particle data.

VAN DER MEEREN ET AL. POLAR CAP ARC SCINTILLATION 5727



Journal of Geophysical Research: Space Physics 10.1002/2016JA022708

Figure 3. (a–b) Ground- and space-based optical data from the event on 15 January 2015. The arc is visible from the ground in both 630.0 nm and 557.7 nm
data. (c–e) The movement of the arc across the all-sky field of view, displayed on an azimuth/zenith angle grid. Magnetic north is up, magnetic west is left.
Scintillation data from all visible satellites between 1912 and 1952 UT are shown as traces of dots/circles (identical for all three images). The circles below the
images indicate the scintillation scale. (f–g) Scintillation data from all visible satellites in Longyearbyen and Ny-Ålesund. Even though the arc crosses most
satellites in both receivers, scintillation is very low at all times.
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Figure 4. Backscatter data from the Hankasalmi SuperDARN radar at five different times during the event on 15 January 2015. (a–e) Optical data for reference.
The arc is shown in black in the other panels. (f–j) Drift velocity. (k–o) Spectral width. (p–t) Backscatter power. Observe the flow shear in the velocity data
(Figures 4i–4j), as well as the enhanced spectral width and backscatter power near the arc.
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coordinates. The movement across the ASI field of view is partly because of the rotation of the Earth and partly
because the arc drifts toward dusk. The movement is irregular: It seems stationary in a magnetic local time
(MLT) frame until around 1905 UT. After this it drifts westward at a speed of around 600–900 m/s until it starts
to fade around 2000 UT, but with intermittent stops and slight bulges along the way which makes it difficult
to pin down an exact drift speed. The correction for the rotation of the Earth is around 100 m/s and is not
important in this context. The intensity of the arc varies during the event. The maximum intensity as measured
by the ASI is 10–17 kR in 557.7 nm and 2–3.5 kR in 630.0 nm. These are significant emission intensities, and
one should expect some scintillation [Kinrade et al., 2013].

Overlaid on top of Figures 3c–3e are tracks of phase scintillation for all the visible satellites in the Longyear-
byen receiver between 1912 and 1952 UT (identical for all three panels). This shows that phase scintillation is
almost always below!" = 0.2. Figures 3f and 3g show phase scintillation for all satellites in both Longyearbyen
and Ny-Ålesund. Phase scintillation is almost always below 0.2, only barely exceeding 0.2 for short amounts
of time. This shows clearly that there is no or only very weak scintillation from the arc. A more detailed look at
scintillation in relation to line-of-sight intensities for specific satellites will be given shortly.

Figure 4 shows backscatter data from the Hankasalmi SuperDARN radar. The auroral images (Figures 4a–4e)
are shown for reference, and the arc itself is shown in black in the other panels. The presence of backscatter
near the arc indicates field-aligned irregularities at decameter scale. There is also enhanced spectral width
(∼200 m/s) and backscatter power (∼25–30 dB) in relation to the arc. The velocity data (Figures 4f–4j, espe-
cially Figures 4i–4j) show a clear velocity shear in relation to the arc. At 22 MLT (where the radar observations
are made) during strongly positive IMF By , one would expect steady westward flow which would result in
flows toward the radar in the east and away from the radar in the west [e.g., Ruohoniemi et al., 1989]. However,
the flow shear we observe moves with the arc and seems sufficiently abrupt (350 m/s toward versus 50 m/s
away in two adjacent range gates 350 km apart) that this is likely a proper flow shear associated with the arc.

Next we will provide a more detailed look at scintillation data for six selected satellites. Figure 5 shows the
first three, which are GPS 11, GLONASS 20, and GPS 28. Figures 5a–5c and 5g–5i show emission intensities in
the line of sight to the satellites from the Longyearbyen and Ny-Ålesund ASIs, respectively. The intensities are
based on the median of a 7-by-7 pixel window centered on the satellite. The arc moves slowly at first, which is
why GPS 11 spends a long time in the emissions. The arc passes GLONASS 20 and GPS 28 much more quickly,
both between 1920 and 1930 UT. The maximum emission intensities in the line of sight to the satellites vary
between 4 and 16 kR for 557.7 nm and are consistently around 2 kR for 630.0 nm.

Figures 5d–5f and 5j–5l show wavelet power spectra of 50 Hz raw phase. In the satellite/receiver com-
binations where the passing of the arc is clearest and most intense, namely, Figures 5e, 5f, and 5l, slight
enhancements of phase variations are visible over the background spectrum, extending down to 1 s varia-
tions in Figures 5f and 5l. These enhancements are not particularly severe, and the scintillation data reflect
this: Figures 5m–5o show amplitude scintillation, which stays very low throughout the passing of the arc, nor-
mally around 0.1 and at all times below 0.2. Figures 5p–5r show phase scintillation, which during the crossing
of the arc is slightly enhanced in GLONASS 20 and GPS 28 (Figures 5q–5r) but only up to !" = 0.2 which is
still only very weak scintillation.

Figures 5s–5u show vertical total electron content (VTEC) from the three satellites. A clear enhancement is
visible during the passing of the arc. It is most clear in GPS 28 (Figure 5u), where a 5 total electron content unit
(TECU; 1 TECU = 1016 el m−2) increase can be seen. This is effectively an increase in TEC by a factor of 2. It is
unknown what the earlier VTEC enhancement in Ny-Ålesund is for this satellite.

Figure 6 tells much the same story for three different satellites at a later time. The passing of the arc is clearly
visible in the optical line-of-sight intensities (Figures 6a–6c and 6g–6i), though very weak in GPS 24. When
crossing GPS 24 the arc had faded and the intensity varied greatly along the arc (as shown in Figure 3e), with
a dim part of the arc crossing the satellite. The spectrograms (Figures 6d–6f and 6j–6l) show no or only very
slight enhancements during the arc crossing. Amplitude scintillation stays around S4 = 0.1 at all times, and
phase scintillation stays below !" = 0.2, effectively meaning there is no or only very weak scintillation at all
(though some slight enhancements over the background level can still be seen at times). The VTEC data again
show enhancements of 2–5 TECU in relation to the arc.

We would like to end this section by pointing out that other satellites besides these six were studied in the
same manner and support these findings. Additionally, we have briefly looked at four other polar cap arc

VAN DER MEEREN ET AL. POLAR CAP ARC SCINTILLATION 5730



Journal of Geophysical Research: Space Physics 10.1002/2016JA022708

Figure 5. GNSS scintillations, vertical total electron content (VTEC), and phase variations for three selected satellites in relation to line-of-sight auroral intensity
during the event on 15 January 2015. (a–c) Longyearbyen (LYR) auroral intensity in the line of sight of the three satellites. (d–f ) Wavelet power spectra of 50 Hz
raw phase from the Longyearbyen receiver on a decibel (logarithmic) color scale. (g–i) Ny-Ålesund (NYA) line-of-sight auroral intensity. (j–l) Wavelet power
spectra from the Ny-Ålesund receiver. (m–o) 1 s S4 amplitude scintillation index from both receivers. (p–r) 1 s !" phase scintillation index from both receivers.
(s–u) 60 s VTEC from the satellites at both receivers. (v) GNSS satellites and a selected 630.0 nm all-sky image on a polar axis (zenith angle versus azimuth;
magnetic north is up, magnetic east is right).

events (22 December 2014 22:10, 15 January 2015 21:30, 16 January 2015 22:30, and 16 January 2015 23:40).
These events were smaller and more transient and complex, which is why we chose to focus on a single, clear
event in this study. It bears mentioning, however, that the other events seemed to support the above findings,
and that we found no results in contradiction with those of the current study.

4. Discussion
4.1. Evidence of Irregularities
There is evidence of irregularities in relation to the arc. The presence of SuperDARN backscatter and the
enhanced backscatter power indicates the presence of decameter field-aligned irregularities near the arc.
There is also enhanced spectral width in relation to the arc. The physical reasons behind enhanced spectral
width are complex, but the enhancement might suggest ongoing irregularity processes [André et al., 2000].
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Figure 6. See Figure 5 for description. This figure highlights three different satellites.

Another evidence of increased structuring in relation to the arc is the slight enhancements in scintillation and
the increase in spectral power in the phase spectrograms. Although the scintillation levels are very low, there
are slight increases in phase scintillation in several satellites when the arc crosses the line of sight (as seen in
Figures 5 and 6). This indicates that there are indeed some enhancement of irregularities in relation to the arc.
This is naturally also visible in the phase spectrograms (since they are derived from the exact same data as
the !" index), which show slightly enhanced phase variations down to 1 s. van der Meeren et al. [2014] used
such spectrograms to study a drifting plasma structure which could be assumed to be stable (not changing
in time) compared to its drift speed. It was, therefore, possible to convert the temporal scale of the spectrum
to spatial scale by using the drift speed of the plasma. In the current study (as in van der Meeren et al. [2015])
we are looking at ionization from particle precipitation, with a significant contribution from the E region (as
evidenced by the much stronger 557.7 nm emissions occurring at lower altitudes than the weaker 630.0 nm
emissions). The recombination rate at E region altitudes is much higher than in the F region, and the ion-
ized plasma cannot be assumed to be a stable structure drifting westward with the arc. Therefore, we cannot
convert the temporal spectrogram scale to spatial scale in this case.

In general, the observations indicate the presence of decameter-scale irregularities in relation to the polar cap
arc. From the power law spectrum of irregularities in the ionosphere we can then infer that irregularities must
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exist at larger scale lengths, too. The irregularities are, however, too weak to cause scintillation effects of con-
cern to GPS users. The presence of strong HF backscatter colocated with low levels of amplitude scintillation
has been noted in previous studies [van der Meeren et al., 2014, 2015].

4.2. Irregularity Mechanisms
An extensive discussion of all possible structuring mechanisms is outside the scope of this study. However,
we would like to briefly discuss some important candidates.

Polar cap arcs are known to be associated with flow shears [e.g., Carlson and Cowley, 2005; Eriksson et al., 2006].
The velocity shear seen in the SuperDARN data (Figures 4i and 4j) could drive the Kelvin-Helmholtz (KH) insta-
bility. The KH growth rate can be estimated by #KH = 0.2ΔV∕L where ΔV is the velocity difference and L is the
scale length of the velocity difference [Carlson et al., 2008]. Based on the velocity data shown in Figure 4j, the
KH growth time can be estimated to ∼70 min, which indicates the KH instability is not effective. However, due
to the one-dimensionality and low spatial resolution of the SuperDARN data, this estimate may be wildly off
in either direction. Based on the available data for our event, we are unable to provide an accurate estimate
of the KH growth time.

The gradient drift instability is another common instability mechanism in the polar ionosphere, which works
on the trailing edge of drifting plasma structures [e.g., Tsunoda, 1988]. It was pointed out in the previous
section that there is no single plasma structure drifting westward with the arc, but rather a continuous ion-
ization and recombination which moves westward. Therefore, we assume there will be no structuring by the
gradient drift instability.

Finally, we would like to mention the creation of irregularities directly by structured ionization. Previous stud-
ies have observed that soft electron precipitation may create F region irregularities [Kelley et al., 1982; Moen
et al., 2002]. A statistical study by Kinrade et al. [2013] found a relationship between GPS phase scintillation
and optical auroral emissions at 557.7 nm (E region). Auroral precipitation is known to be structured on spa-
tial scales down to tens of meters [e.g., Sandahl et al., 2008, and references therein], so it is conceivable that
the irregularities are directly created by the auroral precipitation associated with the arc. Unfortunately, we
have no way of investigating this further based on the available data from this event.

4.3. Electron Density Considerations
A possible explanation for the lack of strong irregularities might be the low density of the plasma. The VTEC
measurements (Figures 5s–5u and 6s–6u) indicate a background density of ∼5 TECU. This is supported by
ionosonde data from Longyearbyen as well as global TEC data from the Madrigal database (not shown). The
low density naturally limits the severity of irregularities formed by instability processes. This is in contrast to
southward IMF conditions, where dayside density plasma is prominent in the polar cap and the instability
processes often develop strong irregularities causing severe scintillation. It is possible that the dayside (and
thus higher density) nature of the observations by Prikryl et al. [2015a] has contributed to the scintillation levels
they observed. Studies of the equatorial ionosphere have shown that the background density can influence
the severity of scintillation [Whalen, 2009; Li et al., 2011].

Another salient point concerning the electron density is the fact that the arc shows an increase in up to 5 TECU.
The total electron content thus reaches twice the background level, and ionosonde data from Longyear-
byen show a similar increase (factor of 2) in the F2 peak critical frequency. This meets the relative density
requirements of polar cap patches (though the arc is of course not a patch), which are associated with strong
scintillation [e.g., Carlson, 2012, and references therein]. A review by Carlson [1994] points out that scintillation
intensity scales with absolute fluctuation in TEC, not relative fluctuation. Thus, even though the arc displays a
factor of 2 increase in TEC, the increase is still smaller in absolute terms than high-density patches with dayside
densities. It is possible that this is part of the reason why there is no strong scintillation in relation to the arc.

Previous studies have shown that during transitions from IMF south to IMF north, polar cap arcs and patches
can coexist due to the sudden appearance of polar cap arcs during IMF north conditions compared to the
slower response of patches exiting the polar cap [Valladares et al., 1998; Basu and Valladares, 1999]. This could
mean that during such transition states, flow shears associated with polar cap arcs may structure the existing
high-density plasma (such as patches) through the KH instability. It is thus conceivable that polar cap arcs
in a high-density ionosphere could pose a problem with regards to scintillation. In the current study the IMF
was consistently northward oriented several hours before the event, so the transition effect is not relevant
(as confirmed by the background density measurements). It would be beneficial for future studies to study
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plasma structuring associated with polar cap arcs when the background density is high, such as in summer
or during transition states from IMF north to IMF south.

5. Conclusions

This study has shown a single case of scintillation and irregularities in relation to a polar cap arc in unprece-
dented detail. The main findings of the study can be summarized as follows.

1. During northward IMF conditions, weak irregularities are observed in relation to the nightside part of a
long-lived, Sun-aligned polar cap arc.

2. The irregularities are evidenced by the presence of HF backscatter (indicating decameter-scale
irregularities) as well as slight enhancements of GNSS phase variations and 1 s !".

3. The polar cap arc causes no amplitude scintillation and does not cause significant phase scintillation
(!" ≤ 0.2).

4. The lack of scintillation may be related to the low density in the polar cap after several hours of
northward IMF.

Further studies should be carried out to close the gap in our knowledge of high-latitude irregularities during
northward IMF conditions. Specifically,

1. further case studies and statistical studies should be carried out to get a representative view of irregularities
and scintillation in relation to polar cap arcs;

2. direct comparisons should be made between auroral arcs and polar cap arcs of similar intensities, to find
out if there is a difference between the effects of irregularities created by precipitation in the auroral oval
and in the polar cap; and

3. polar cap arcs should be studied when there are high background densities, which could enable more
severe irregularity formation and possibly a stronger impact on GNSS scintillation. This could be done by
studying polar cap arcs after a south-to-north transition of the IMF, where the polar cap may be filled with
high-density dayside plasma when the arc forms. Alternatively, one could study the dayside portion of a
polar cap arc or arcs during summer.

References
Aarons, J., B. Lin, M. Mendillo, K. Liou, and M. Codrescu (2000), Global positioning system phase fluctuations and ultraviolet images from the

polar satellite, J. Geophys. Res., 105(A3), 5201–5213, doi:10.1029/1999JA900409.
Akasofu, S.-I. (1964), The development of the auroral substorm, Planet. Space Sci., 12(4), 273–282, doi:10.1016/0032-0633(64)90151-5.
Alfonsi, L., L. Spogli, G. De Franceschi, V. Romano, M. Aquino, A. Dodson, and C. N. Mitchell (2011), Bipolar climatology of GPS ionospheric

scintillation at solar minimum, Radio Sci., 46, RS0D05, doi:10.1029/2010RS004571.
André, R., M. Pinnock, J.-P. Villain, and C. Hanuise (2000), On the factor conditioning the doppler spectral width determined

from SuperDARN HF radars, Int. J. Geomag. Aeron., 2(1), 77–86.
Basu, S., and C. Valladares (1999), Global aspects of plasma structures, J. Atmos. Sol. Terr. Phys., 61(1–2), 127–139,

doi:10.1016/S1364-6826(98)00122-9.
Basu, S., S. Basu, E. MacKenzie, W. R. Coley, J. R. Sharber, and W. R. Hoegy (1990a), Plasma structuring by the gradient drift instability at high

latitudes and comparison with velocity shear driven processes, J. Geophys. Res., 95(A6), 7799–7818, doi:10.1029/JA095iA06p07799.
Basu, S., S. Basu, E. J. Weber, and G. J. Bishop (1990b), Plasma structuring in the polar cap, J. Geomagn. Geoelectr., 42(6), 763–776,

doi:10.5636/jgg.42.763.
Basu, S., S. Basu, E. Costa, C. Bryant, C. E. Valladares, and R. C. Livingston (1991), Interplanetary magnetic field control of drifts and anisotropy

of high-latitude irregularities, Radio Sci., 26(4), 1079–1103, doi:10.1029/91RS00586.
Basu, S., S. Basu, P. K. Chaturvedi, and C. M. Bryant (1994), Irregularity structures in the cusp/cleft and polar cap regions, Radio Sci., 29(1),

195–207, doi:10.1029/93RS01515.
Basu, S., E. J. Weber, T. W. Bullett, M. J. Keskinen, E. MacKenzie, P. Doherty, R. Sheehan, H. Kuenzler, P. Ning, and J. Bongiolatti (1998),

Characteristics of plasma structuring in the cusp/cleft region at Svalbard, Radio Sci., 33(6), 1885–1899, doi:10.1029/98RS01597.
Béniguel, Y., et al. (2009), Ionospheric scintillation monitoring and modelling, Ann. Geophys., 52(3–4), 391–416, doi:10.4401/ag-4595.
Berkey, F. T., L. L. Cogger, S. Ismail, and Y. Kamide (1976), Evidence for a correlation between Sun-aligned arcs and the interplanetary

magnetic field direction, Geophys. Res. Lett., 3(3), 145–147, doi:10.1029/GL003i003p00145.
Buchau, J., E. J. Weber, D. N. Anderson, H. C. Carlson, J. G. Moore, B. W. Reinisch, and R. C. Livingston (1985), Ionospheric structures

in the polar cap: Their origin and relation to 250-MHz scintillation, Radio Sci., 20(3), 325–338, doi:10.1029/RS020i003p00325.
Carlson, H. C. (1994), The dark polar ionosphere: Progress and future challenges, Radio Sci., 29(1), 157–165, doi:10.1029/93RS02125.
Carlson, H. C. (2012), Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques,

Radio Sci., 47, RS0L21, doi:10.1029/2011RS004946.
Carlson, H. C., and S. W. H. Cowley (2005), Accelerated polar rain electrons as the source of Sun-aligned arcs in the polar cap during

northward interplanetary magnetic field conditions, J. Geophys. Res., 110, A05302, doi:10.1029/2004JA010669.
Carlson, H. C., T. Pedersen, S. Basu, M. Keskinen, and J. Moen (2007), Case for a new process, not mechanism, for cusp irregularity production,

J. Geophys. Res., 112, A11304, doi:10.1029/2007JA012384.
Carlson, H. C., K. Oksavik, and J. Moen (2008), On a new process for cusp irregularity production, Ann. Geophys., 26(9), 2871–2885,

doi:10.5194/angeo-26-2871-2008.

Acknowledgments
The University of Oslo
ASI data are available at
http://tid.uio.no/plasma/aurora. The
IMF and solar wind data were provided
by the NASA OMNIWeb service
(http://omniweb.gsfc.nasa.gov). The
DMSP SSUSI data are available from
http://ssusi.jhuapl.edu. The DMSP
particle detectors were designed by
Dave Hardy of AFRL and data obtained
from JHU/APL. The SuperDARN data
are retrieved from Virginia Tech using
the DaViTpy software package. The
ionosonde data (not shown) are avail-
able from http://dynserv.eiscat.uit.no.
The GNSS data can be made available
upon request from the author. This
study was supported by the Research
Council of Norway under contracts
212014, 223252, and 230935. We
wish to thank Nikolai Østgaard
at the Birkeland Centre for Space
Science, University of Bergen for
helpful discussions.

VAN DER MEEREN ET AL. POLAR CAP ARC SCINTILLATION 5734

http://dx.doi.org/10.1029/1999JA900409
http://dx.doi.org/10.1016/0032-0633(64)90151-5
http://dx.doi.org/10.1029/2010RS004571
http://dx.doi.org/10.1016/S1364-6826(98)00122-9
http://dx.doi.org/10.1029/JA095iA06p07799
http://dx.doi.org/10.5636/jgg.42.763
http://dx.doi.org/10.1029/91RS00586
http://dx.doi.org/10.1029/93RS01515
http://dx.doi.org/10.1029/98RS01597
http://dx.doi.org/10.4401/ag-4595
http://dx.doi.org/10.1029/GL003i003p00145
http://dx.doi.org/10.1029/RS020i003p00325
http://dx.doi.org/10.1029/93RS02125
http://dx.doi.org/10.1029/2011RS004946
http://dx.doi.org/10.1029/2004JA010669
http://dx.doi.org/10.1029/2007JA012384
http://dx.doi.org/10.5194/angeo-26-2871-2008
http://tid.uio.no/plasma/aurora
http://omniweb.gsfc.nasa.gov
http://ssusi.jhuapl.edu
http://dynserv.eiscat.uit.no


Journal of Geophysical Research: Space Physics 10.1002/2016JA022708

Chisham, G., et al. (2007), A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and
future directions, Surv. Geophys., 28(1), 33–109, doi:10.1007/s10712-007-9017-8.

Clausen, L. B. N., J. I. Moen, K. Hosokawa, and J. M. Holmes (2016), GPS scintillations in the high latitudes during periods of dayside and
nightside reconnection, J. Geophys. Res. Space Physics, 121, 3293–3309, doi:10.1002/2015JA022199.

Coker, C., G. S. Bust, R. A. Doe, and T. L. Gaussiran (2004), High-latitude plasma structure and scintillation, Radio Sci., 39, RS1S15,
doi:10.1029/2002RS002833.

Davis, T. N. (1963), Negative correlation between polar-cap visual aurora and magnetic activity, J. Geophys. Res., 68(15), 4447–4453,
doi:10.1029/JZ068i015p04447.

Elphinstone, R. D., J. S. Murphree, and L. L. Cogger (1996), What is a global auroral substorm?, Rev. Geophys., 34(2), 169–232,
doi:10.1029/96RG00483.

Eriksson, S., G. Provan, F. J. Rich, M. Lester, S. E. Milan, S. Massetti, J. T. Gosling, M. W. Dunlop, and H. Rème (2006), Electrodynamics
of a split-transpolar aurora, J. Geophys. Res., 111, A11319, doi:10.1029/2006JA011976.

Fear, R. C., and S. E. Milan (2012a), The IMF dependence of the local time of transpolar arcs: Implications for formation mechanism,
J. Geophys. Res., 117, A03213, doi:10.1029/2011JA017209.

Fear, R. C., and S. E. Milan (2012b), Ionospheric flows relating to transpolar arc formation, J. Geophys. Res., 117, A09230,
doi:10.1029/2012JA017830.

Feldstein, Y. I., and G. V. Starkov (1967), Dynamics of auroral belt and polar geomagnetic disturbances, Planet. Space Sci., 15(2), 209–229,
doi:10.1016/0032-0633(67)90190-0.

Forte, B. (2005), Optimum detrending of raw GPS data for scintillation measurements at auroral latitudes, J. Atmos. Sol. Terr. Phys., 67(12),
1100–1109, doi:10.1016/j.jastp.2005.01.011.

Forte, B., and S. M. Radicella (2002), Problems in data treatment for ionospheric scintillation measurements, Radio Sci., 37(6), 1096,
doi:10.1029/2001RS002508.

Forte, B., M. Materassi, L. Alfonsi, V. Romano, G. De Franceschi, and P. Spalla (2011), Optimum parameter for estimating phase fluctuations
on transionospheric signals at high latitudes, Adv. Space Res., 47(12), 2188–2193, doi:10.1016/j.asr.2010.04.033.

Foster, J. C., et al. (2005), Multiradar observations of the polar tongue of ionization, J. Geophys. Res., 110, A09S31,
doi:10.1029/2004JA010928.

Garner, T. W., R. B. Harris, J. A. York, C. S. Herbster, C. F. Minter, and D. L. Hampton (2011), An auroral scintillation observation using precise,
collocated GPS receivers, Radio Sci., 46, RS1018, doi:10.1029/2010RS004412.

Greenwald, R. A., et al. (1995), DARN/SuperDARN, Space Sci. Rev., 71(1–4), 761–796, doi:10.1007/BF00751350.
Gussenhoven, M. S. (1982), Extremely high latitude auroras, J. Geophys. Res., 87(A4), 2401–2412, doi:10.1029/JA087iA04p02401.
Gwal, A. K., and A. Jain (2011), GPS scintillation studies in the arctic region during the first winter-phase 2008 Indian Arctic Expedition,

Polar Sci., 4(4), 574–587, doi:10.1016/j.polar.2010.08.001.
Hey, J. S., S. J. Parsons, and J. W. Phillips (1946), Fluctuations in cosmic radiation at radio-frequencies, Nature, 158(4007), 234,

doi:10.1038/158234a0.
Hosokawa, K., Y. Otsuka, Y. Ogawa, and T. Tsugawa (2014), Observations of GPS scintillation during an isolated auroral substorm, Prog. Earth

Planet. Sci., 1(1), 1–9, doi:10.1186/2197-4284-1-16.
Jiao, Y., Y. T. Morton, S. Taylor, and W. Pelgrum (2013), Characterization of high-latitude ionospheric scintillation of GPS signals, Radio Sci., 48,

698–708, doi:10.1002/2013RS005259.
Jin, Y., J. I. Moen, and W. J. Miloch (2014), GPS scintillation effects associated with polar cap patches and substorm auroral activity: Direct

comparison, J. Space Weather Space Clim., 4, A23, doi:10.1051/swsc/2014019.
Jin, Y., J. I. Moen, and W. J. Miloch (2015), On the collocation of the cusp aurora and the GPS phase scintillation: A statistical study, J. Geophys.

Res. Space Physics, 120, 9176–9191, doi:10.1002/2015JA021449.
Kelley, M. C., J. F. Vickrey, C. W. Carlson, and R. Torbert (1982), On the origin and spatial extent of high-latitude F region irregularities,

J. Geophys. Res., 87(A6), 4469–4475, doi:10.1029/JA087iA06p04469.
Kinrade, J., C. N. Mitchell, P. Yin, N. Smith, M. J. Jarvis, D. J. Maxfield, M. C. Rose, G. S. Bust, and A. T. Weatherwax (2012), Ionospheric

scintillation over Antarctica during the storm of 5–6 April 2010, J. Geophys. Res., 117, A05304, doi:10.1029/2011JA017073.
Kinrade, J., C. N. Mitchell, N. D. Smith, Y. Ebihara, A. T. Weatherwax, and G. S. Bust (2013), GPS phase scintillation associated with optical

auroral emissions: First statistical results from the geographic south pole, J. Geophys. Res. Space Physics, 118, 2490–2502,
doi:10.1002/jgra.50214.

Kintner, P. M., B. M. Ledvina, and E. R. de Paula (2007), GPS and ionospheric scintillations, Space Weather, 5, S09003,
doi:10.1029/2006SW000260.

Knudsen, W. C. (1974), Magnetospheric convection and the high-latitude F2 ionosphere, J. Geophys. Res., 79(7), 1046–1055,
doi:10.1029/JA079i007p01046.

Lepping, R. P., et al. (1995), The WIND magnetic field investigation, Space Sci. Rev., 71(1–4), 207–229, doi:10.1007/BF00751330.
Li, G., B. Ning, Z. Ren, and L. Hu (2010), Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum,

GPS Solutions, 14(4), 331–341, doi:10.1007/s10291-009-0156-x.
Li, G., B. Ning, M. A. Abdu, X. Yue, L. Liu, W. Wan, and L. Hu (2011), On the occurrence of postmidnight equatorial F region irregularities

during the June solstice, J. Geophys. Res., 116, A04318, doi:10.1029/2010JA016056.
Liou, K., J. M. Ruohoniemi, P. T. Newell, R. Greenwald, C.-I. Meng, and M. R. Hairston (2005), Observations of ionospheric plasma flows within

theta auroras, J. Geophys. Res., 110, A03303, doi:10.1029/2004JA010735.
Lockwood, M., and H. C. Carlson (1992), Production of polar cap electron density patches by transient magnetopause reconnection,

Geophys. Res. Lett., 19(17), 1731–1734, doi:10.1029/92GL01993.
Mawson, D. (1916), Auroral observations at the Cape Royds Station, Antarctica, Trans. R. Soc. South Aust., 40, 151–212.
McPherron, R. L. (1970), Growth phase of magnetospheric substorms, J. Geophys. Res., 75(28), 5592–5599, doi:10.1029/JA075i028p05592.
McPherron, R. L. (1979), Magnetospheric substorms, Rev. Geophys., 17(4), 657–681, doi:10.1029/RG017i004p00657.
Mitchell, C. N., L. Alfonsi, G. De Franceschi, M. Lester, V. Romano, and A. W. Wernik (2005), GPS TEC and scintillation measurements from the

polar ionosphere during the October 2003 storm, Geophys. Res. Lett., 32, L12S03, doi:10.1029/2004GL021644.
Moen, J., I. K. Walker, L. Kersley, and S. E. Milan (2002), On the generation of cusp HF backscatter irregularities, J. Geophys. Res., 107(A4), 1044,

doi:10.1029/2001JA000111.
Moen, J., K. Oksavik, T. Abe, M. Lester, Y. Saito, T. A. Bekkeng, and K. S. Jacobsen (2012), First in-situ measurements of HF radar echoing

targets, Geophys. Res. Lett., 39, L07104, doi:10.1029/2012GL051407.
Moen, J., K. Oksavik, L. Alfonsi, Y. Daabakk, V. Romano, and L. Spogli (2013), Space weather challenges of the polar cap ionosphere, J. Space

Weather Space Clim., 3, A02, doi:10.1051/swsc/2013025.

VAN DER MEEREN ET AL. POLAR CAP ARC SCINTILLATION 5735

http://dx.doi.org/10.1007/s10712-007-9017-8
http://dx.doi.org/10.1002/2015JA022199
http://dx.doi.org/10.1029/2002RS002833
http://dx.doi.org/10.1029/JZ068i015p04447
http://dx.doi.org/10.1029/96RG00483
http://dx.doi.org/10.1029/2006JA011976
http://dx.doi.org/10.1029/2011JA017209
http://dx.doi.org/10.1029/2012JA017830
http://dx.doi.org/10.1016/0032-0633(67)90190-0
http://dx.doi.org/10.1016/j.jastp.2005.01.011
http://dx.doi.org/10.1029/2001RS002508
http://dx.doi.org/10.1016/j.asr.2010.04.033
http://dx.doi.org/10.1029/2004JA010928
http://dx.doi.org/10.1029/2010RS004412
http://dx.doi.org/10.1007/BF00751350
http://dx.doi.org/10.1029/JA087iA04p02401
http://dx.doi.org/10.1016/j.polar.2010.08.001
http://dx.doi.org/10.1038/158234a0
http://dx.doi.org/10.1186/2197-4284-1-16
http://dx.doi.org/10.1002/2013RS005259
http://dx.doi.org/10.1051/swsc/2014019
http://dx.doi.org/10.1002/2015JA021449
http://dx.doi.org/10.1029/JA087iA06p04469
http://dx.doi.org/10.1029/2011JA017073
http://dx.doi.org/10.1002/jgra.50214
http://dx.doi.org/10.1029/2006SW000260
http://dx.doi.org/10.1029/JA079i007p01046
http://dx.doi.org/10.1007/BF00751330
http://dx.doi.org/10.1007/s10291-009-0156-x
http://dx.doi.org/10.1029/2010JA016056
http://dx.doi.org/10.1029/2004JA010735
http://dx.doi.org/10.1029/92GL01993
http://dx.doi.org/10.1029/JA075i028p05592
http://dx.doi.org/10.1029/RG017i004p00657
http://dx.doi.org/10.1029/2004GL021644
http://dx.doi.org/10.1029/2001JA000111
http://dx.doi.org/10.1029/2012GL051407
http://dx.doi.org/10.1051/swsc/2013025


Journal of Geophysical Research: Space Physics 10.1002/2016JA022708

Mushini, S. C., P. T. Jayachandran, R. B. Langley, J. W. MacDougall, and D. Pokhotelov (2012), Improved amplitude- and phase-scintillation
indices derived from wavelet detrended high-latitude GPS data, GPS Solutions, 16(3), 363–373, doi:10.1007/s10291-011-0238-4.

Newell, P. T., K. Liou, and G. R. Wilson (2009), Polar cap particle precipitation and aurora: Review and commentary, J. Atmos. Sol. Terr. Phys.,
71(2), 199–215, doi:10.1016/j.jastp.2008.11.004.

Ngwira, C. M., L.-A. McKinnell, and P. J. Cilliers (2010), GPS phase scintillation observed over a high-latitude Antarctic station during solar
minimum, J. Atmos. Sol. Terr. Phys., 72(9–10), 718–725, doi:10.1016/j.jastp.2010.03.014.

Ogilvie, K. W., et al. (1995), SWE, a comprehensive plasma instrument for the Wind spacecraft, Space Sci. Rev., 71(1–4), 55–77,
doi:10.1007/BF00751326.

Oksavik, K., V. L. Barth, J. Moen, and M. Lester (2010), On the entry and transit of high-density plasma across the polar cap, J. Geophys. Res.,
115, A12308, doi:10.1029/2010JA015817.

Oksavik, K., J. Moen, M. Lester, T. A. Bekkeng, and J. K. Bekkeng (2012), In situ measurements of plasma irregularity growth in the cusp
ionosphere, J. Geophys. Res., 117, A11301, doi:10.1029/2012JA017835.

Oksavik, K., C. van der Meeren, D. A. Lorentzen, L. J. Baddeley, and J. Moen (2015), Scintillation and loss of signal lock from poleward moving
auroral forms in the cusp ionosphere, J. Geophys. Res. Space Physics, 120, 9161–9175, doi:10.1002/2015JA021528.

Paxton, L. J., et al. (1992), Special Sensor Ultraviolet Spectrographic Imager: An Instrument Description, pp. 2–15, Int. Soc. Opt. and Photonics,
San Diego, Calif., doi:10.1117/12.60595.

Prikryl, P., P. T. Jayachandran, S. C. Mushini, D. Pokhotelov, J. W. MacDougall, E. Donovan, E. Spanswick, and J.-P. St.-Maurice (2010),
GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum, Ann. Geophys., 28(6), 1307–1316,
doi:10.5194/angeo-28-1307-2010.

Prikryl, P., et al. (2015a), GPS phase scintillation at high latitudes during geomagnetic storms of 7–17 March 2012—Part 1: The North
American sector, Ann. Geophys., 33(6), 637–656, doi:10.5194/angeo-33-637-2015.

Prikryl, P., P. T. Jayachandran, R. Chadwick, and T. D. Kelly (2015b), Climatology of GPS phase scintillation at northern high latitudes for the
period from 2008 to 2013, Ann. Geophys., 33(5), 531–545, doi:10.5194/angeo-33-531-2015.

Rostoker, G., S.-I. Akasofu, J. Foster, R. Greenwald, Y. Kamide, K. Kawasaki, A. Lui, R. McPherron, and C. Russell (1980), Magnetospheric
substorms—Definition and signatures, J. Geophys. Res., 85(A4), 1663–1668, doi:10.1029/JA085iA04p01663.

Ruohoniemi, J. M., R. A. Greenwald, K. B. Baker, J.-P. Villain, C. Hanuise, and J. Kelly (1989), Mapping high-latitude plasma convection with
coherent HF radars, J. Geophys. Res., 94(A10), 13,463–13,477, doi:10.1029/JA094iA10p13463.

Sandahl, I., T. Sergienko, and U. Brändström (2008), Fine structure of optical aurora, J. Atmos. Sol. Terr. Phys., 70(18), 2275–2292,
doi:10.1016/j.jastp.2008.08.016.

Sandholt, P. E., M. Lockwood, T. Oguti, S. W. H. Cowley, K. S. C. Freeman, B. Lybekk, A. Egeland, and D. M. Willis (1990), Midday auroral
breakup events and related energy and momentum transfer from the magnetosheath, J. Geophys. Res., 95(A2), 1039–1060,
doi:10.1029/JA095iA02p01039.

Sandholt, P. E., J. Moen, D. Opsvik, W. F. Denig, and W. J. Burke (1993), Auroral event sequence at the dayside polar cap boundary: Signature
of time-varying solar wind-magnetosphere-ionosphere coupling, Adv. Space Res., 13(4), 7–15, doi:10.1016/0273-1177(93)90305-U.

Sato, T. (1959), Morphology of the ionospheric F2 disturbances in the polar region, Rep. Ionos. Space Res. Jpn., 131, 91–104.
Spogli, L., L. Alfonsi, G. De Franceschi, V. Romano, M. H. O. Aquino, and A. Dodson (2009), Climatology of GPS ionospheric scintillations over

high and mid-latitude European regions, Ann. Geophys., 27(9), 3429–3437, doi:10.5194/angeo-27-3429-2009.
Thorolfsson, A., J.-C. Cerisier, M. Lockwood, P. E. Sandholt, C. Senior, and M. Lester (2000), Simultaneous optical and radar signatures of

poleward-moving auroral forms, Ann. Geophys., 18(9), 1054–1066, doi:10.1007/s00585-000-1054-2.
Tiwari, S., A. Jain, S. Sarkar, S. Jain, and A. K. Gwal (2012), Ionospheric irregularities at Antarctic using GPS measurements, J. Earth Syst. Sci.,

121(2), 345–353, doi:10.1007/s12040-012-0168-8.
Torrence, C., and G. P. Compo (1998), A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79(1), 61–78,

doi:10.1175/1520-0477(1998)079.
Tsunoda, R. T. (1988), High-latitude F region irregularities: A review and synthesis, Rev. Geophys., 26(4), 719–760,

doi:10.1029/RG026i004p00719.
Valladares, C. E., K. Fukui, R. Sheehan, H. C. Carlson, and T. Bullett (1998), Simultaneous observations of polar cap patches and Sun-aligned

arcs during transitions of the IMF, Radio Sci., 33(6), 1829–1845, doi:10.1029/98RS02187.
van der Meeren, C., K. Oksavik, D. Lorentzen, J. I. Moen, and V. Romano (2014), GPS scintillation and irregularities at the front of an ionization

tongue in the nightside polar ionosphere, J. Geophys. Res. Space Physics, 119, 8624–8636, doi:10.1002/2014JA020114.
van der Meeren, C., K. Oksavik, D. A. Lorentzen, M. T. Rietveld, and L. B. N. Clausen (2015), Severe and localized GNSS scintillation

at the poleward edge of the nightside auroral oval during intense substorm aurora, J. Geophys. Res. Space Physics, 120, 10,607–10,621,
doi:10.1002/2015JA021819.

Vorobjev, V. G., G. Gustafsson, G. V. Starkov, Y. I. Feldstein, and N. F. Shevnina (1975), Dynamics of day and night aurora during substorms,
Planet. Space Sci., 23(2), 269–278, doi:10.1016/0032-0633(75)90132-4.

Weber, E. J., J. Buchau, J. G. Moore, J. R. Sharber, R. C. Livingston, J. D. Winningham, and B. W. Reinisch (1984), F layer ionization patches
in the polar cap, J. Geophys. Res., 89(A3), 1683–1694, doi:10.1029/JA089iA03p01683.

Weber, E. J., J. A. Klobuchar, J. Buchau, H. C. Carlson, R. C. Livingston, O. de la Beaujardiere, M. McCready, J. G. Moore, and G. J. Bishop (1986),
Polar cap F layer patches: Structure and dynamics, J. Geophys. Res., 91(A11), 12,121–12,129, doi:10.1029/JA091iA11p12121.

Whalen, J. A. (2009), The linear dependence of GHz scintillation on electron density observed in the equatorial anomaly, Ann. Geophys.,
27(4), 1755–1761, doi:10.5194/angeo-27-1755-2009.

Zhang, Q.-H., B.-C. Zhang, J. Moen, M. Lockwood, I. W. McCrea, H.-G. Yang, H.-Q. Hu, R.-Y. Liu, S.-R. Zhang, and M. Lester (2013a),
Polar cap patch segmentation of the tongue of ionization in the morning convection cell, Geophys. Res. Lett., 40, 2918–2922,
doi:10.1002/grl.50616.

Zhang, Q.-H., et al. (2013b), Direct observations of the evolution of polar cap ionization patches, Science, 339(6127), 1597–1600,
doi:10.1126/science.1231487.

Zou, Y., Y. Nishimura, L. R. Lyons, E. F. Donovan, K. Shiokawa, J. M. Ruohoniemi, K. A. McWilliams, and N. Nishitani (2015),
Polar cap precursor of nightside auroral oval intensifications using polar cap arcs, J. Geophys. Res. Space Physics, 120,
10,698–10,711, doi:10.1002/2015JA021816.

VAN DER MEEREN ET AL. POLAR CAP ARC SCINTILLATION 5736

http://dx.doi.org/10.1007/s10291-011-0238-4
http://dx.doi.org/10.1016/j.jastp.2008.11.004
http://dx.doi.org/10.1016/j.jastp.2010.03.014
http://dx.doi.org/10.1007/BF00751326
http://dx.doi.org/10.1029/2010JA015817
http://dx.doi.org/10.1029/2012JA017835
http://dx.doi.org/10.1002/2015JA021528
http://dx.doi.org/10.1117/12.60595
http://dx.doi.org/10.5194/angeo-28-1307-2010
http://dx.doi.org/10.5194/angeo-33-637-2015
http://dx.doi.org/10.5194/angeo-33-531-2015
http://dx.doi.org/10.1029/JA085iA04p01663
http://dx.doi.org/10.1029/JA094iA10p13463
http://dx.doi.org/10.1016/j.jastp.2008.08.016
http://dx.doi.org/10.1029/JA095iA02p01039
http://dx.doi.org/10.1016/0273-1177(93)90305-U
http://dx.doi.org/10.5194/angeo-27-3429-2009
http://dx.doi.org/10.1007/s00585-000-1054-2
http://dx.doi.org/10.1007/s12040-012-0168-8
http://dx.doi.org/10.1175/1520-0477(1998)079
http://dx.doi.org/10.1029/RG026i004p00719
http://dx.doi.org/10.1029/98RS02187
http://dx.doi.org/10.1002/2014JA020114
http://dx.doi.org/10.1002/2015JA021819
http://dx.doi.org/10.1016/0032-0633(75)90132-4
http://dx.doi.org/10.1029/JA089iA03p01683
http://dx.doi.org/10.1029/JA091iA11p12121
http://dx.doi.org/10.5194/angeo-27-1755-2009
http://dx.doi.org/10.1002/grl.50616
http://dx.doi.org/10.1126/science.1231487
http://dx.doi.org/10.1002/2015JA021816

	Abstract
	References

